IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222009124.html
   My bibliography  Save this article

Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints

Author

Listed:
  • Yu, Jianxi
  • Han, Wenquan
  • Chen, Kang
  • Liu, Pei
  • Li, Zheng

Abstract

Maintaining the online calculation accuracy of isentropic efficiency of a steam turbine stage is challenging due to widely existing gross errors in steam turbine measurements. They invalidate modelling results and hinder model-based monitoring and optimization. Data reconciliation is a mathematical method for gross error detection and has been applied in various industrial systems. In power plant systems, previous studies focus on gross error detection of flow rate measurements in regenerative systems based on equality constraints, which is insufficient for gross error detection of steam turbine systems. We propose a data reconciliation model adding inequality constraints to solve the problem. Statistical test is used to detect gross errors in steam turbine systems. Then an in-service 660 MW ultra-supercritical double reheat power plant is selected as a case study. Gross errors of flow rate measurements are detected and eliminated firstly. Then nonlinear inequality constraints, entropy increase of each stage, are added for further detection. Results show that the proposed model effectively detects gross errors in the steam turbine system and further improve the thermal calculation accuracy by 3.1–5.7%. It provides quantitative guidance for the calibration and maintenance of measurement instruments and facilitates performance monitoring and operation optimization in in-service power plants.

Suggested Citation

  • Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009124
    DOI: 10.1016/j.energy.2022.124009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Data reconciliation and gross error detection for operational data in power plants," Energy, Elsevier, vol. 75(C), pages 14-23.
    2. Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
    3. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    4. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    5. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    6. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    7. Yang, Xuesen & Yang, Qian & Dong, Wei, 2019. "Aeroengine data reconciliation model based on cooperative working equations," Energy, Elsevier, vol. 186(C).
    8. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "Gross error isolability for operational data in power plants," Energy, Elsevier, vol. 74(C), pages 918-927.
    9. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Inequality constrained nonlinear data reconciliation of a steam turbine power plant for enhanced parameter estimation," Energy, Elsevier, vol. 103(C), pages 215-230.
    10. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.
    11. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
    3. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    4. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    5. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    6. Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
    7. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    8. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    9. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    10. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    11. Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
    12. Michał Kozioł & Joachim Kozioł, 2021. "Application of Data Validation and Reconciliation to Improve Measurement Results in the Determination Process of Emission Characteristics in Co-Combustion of Sewage Sludge with Coal," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    13. Jiang, Xiaolong & Liu, Pei & Li, Zheng, 2014. "A data reconciliation based framework for integrated sensor and equipment performance monitoring in power plants," Applied Energy, Elsevier, vol. 134(C), pages 270-282.
    14. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "A Novel Data Management Methodology and Case Study for Monitoring and Performance Analysis of Large-Scale Ground Source Heat Pump (GSHP) and Borehole Thermal Energy Storage (BTES) System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    15. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    16. Šomplák, Radovan & Nevrlý, Vlastimír & Smejkalová, Veronika & Šmídová, Zlata & Pavlas, Martin, 2019. "Bulky waste for energy recovery: Analysis of spatial distribution," Energy, Elsevier, vol. 181(C), pages 827-839.
    17. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    18. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    19. Meng Yue & Guoqian Ma & Yuetao Shi, 2020. "Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control," Energies, MDPI, vol. 13(16), pages 1-22, August.
    20. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.