IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1993-2000.html
   My bibliography  Save this article

Characterization of energy use and performance of global cheese processing

Author

Listed:
  • Xu, Tengfang
  • Flapper, Joris
  • Kramer, Klaas Jan

Abstract

The global cheese-making industry processes approximately one quarter of total raw milk production to create a variety of consumer cheeses, and cheese processing can be very energy-intensive. Characterizing energy usage in existing cheese markets and plants can provide baseline information to allow comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on cheese-making across various countries and regions. The study has found that the magnitudes of average final energy intensity exhibited significant variations, ranging from 4.9 to 8.9MJ per kg cheese across a few countries. In addition, the final energy intensity of individual plants exhibited even more significant variations, ranging from 1.8 to 68.2MJ per kg of cheese from the countries in this study. These significant differences have indicated large potential energy savings' opportunities in the sector. The paper also indicates that there are positive association between implementation of energy measures and the decreasing trends of specific energy consumption over time, and suggests that developing and promulgating an energy-benchmarking framework including a process step approach and efficiency measures should be recommended for evaluating energy performance and improving energy efficiency in cheese-making industry.

Suggested Citation

  • Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1993-2000
    DOI: 10.1016/j.energy.2009.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003533
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    2. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    3. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    2. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    3. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    4. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    5. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.
    6. Nihan Karali & Tengfang Xu & Jayant Sathaye, 2016. "Developing long-term strategies to reduce energy use and CO2 emissions—analysis of three mitigation scenarios for iron and steel production in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(5), pages 699-719, June.
    7. Damour, C. & Hamdi, M. & Josset, C. & Auvity, B. & Boillereaux, L., 2012. "Energy analysis and optimization of a food defrosting system," Energy, Elsevier, vol. 37(1), pages 562-570.
    8. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    9. Mirade, Pierre-Sylvain & Perret, Bruno & Guillemin, Hervé & Picque, Daniel & Desserre, Béatrice & Montel, Marie-Christine & Corrieu, Georges, 2012. "Quantifying energy savings during cheese ripening after implementation of sequential air ventilation in an industrial cheesemaking plant," Energy, Elsevier, vol. 46(1), pages 248-258.
    10. Xu, Tengfang & Karali, Nihan & Sathaye, Jayant, 2014. "Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making," Applied Energy, Elsevier, vol. 122(C), pages 179-188.
    11. Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
    12. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    13. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1993-2000. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.