IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001736.html
   My bibliography  Save this article

Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China

Author

Listed:
  • Yang, Zhiyuan
  • Zhu, Yuemei
  • Zhang, Jinyue
  • Li, Xuyi
  • Ma, Peng
  • Sun, Jiawei
  • Sun, Yongjian
  • Ma, Jun
  • Li, Na

Abstract

This study performed energy analyses of fully mechanized rice production mode (FM) and semi-mechanized rice production mode (SM) in China. Fertilizer, fuel, and water were the three largest inputs, accounting for 92.02% of the total energy input. FM adopted side-deep fertilization with machine transplanting and implemented intermittent irrigation regime to improve water and fertilizer use efficiency. Compared with SM, FM reduced fertilizer and water energy inputs by 1252.62 MJ ha−1 and 2187.87 MJ ha−1, respectively. Because of the lower degree of mechanization, the fuel energy input of SM was 691.19 MJ ha−1 less than that of FM. The total average energy input of FM was 23,610 MJ ha−1, which was 10.80% lower than SM (26,470.01 MJ ha−1), whereas the rice and straw yields of FM were not significantly different from SM. The energy use efficiency, energy productivity, and energy profitability of FM were 11.10, 0.41 kg MJ−1, and 10.10, respectively, corresponding to increases of 8.56%, 8.61%, and 9.49% compared to SM. With appropriate agronomic measures in rice production, a higher degree of mechanization would not necessarily lead to an increase in energy input in Southwest China.

Suggested Citation

  • Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001736
    DOI: 10.1016/j.energy.2022.123270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    2. Zhang, Xiaobo & Yang, Jin & Reardon, Thomas, 2020. "Mechanization outsourcing clusters and division of labor in Chinese agriculture," IFPRI book chapters, in: An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia?, chapter 2, pages 71-96, International Food Policy Research Institute (IFPRI).
    3. Beheshti Tabar, Iman & Keyhani, Alireza & Rafiee, Shaheen, 2010. "Energy balance in Iran's agronomy (1990-2006)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 849-855, February.
    4. Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
    5. Gao, Liangliang & Sun, Dingqiang & Huang, Jikun, 2017. "Impact of land tenure policy on agricultural investments in China: Evidence from a panel data study," China Economic Review, Elsevier, vol. 45(C), pages 244-252.
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    8. Qiao, Fangbin, 2017. "Increasing wage, mechanization, and agriculture production in China," China Economic Review, Elsevier, vol. 46(C), pages 249-260.
    9. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    10. Ozkan, Burhan & Fert, Cemal & Karadeniz, C. Feyza, 2007. "Energy and cost analysis for greenhouse and open-field grape production," Energy, Elsevier, vol. 32(8), pages 1500-1504.
    11. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation," Energy, Elsevier, vol. 189(C).
    12. Nanyan Deng & Patricio Grassini & Haishun Yang & Jianliang Huang & Kenneth G. Cassman & Shaobing Peng, 2019. "Closing yield gaps for rice self-sufficiency in China," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    13. Yilmaz, Ibrahim & Akcaoz, Handan & Ozkan, Burhan, 2005. "An analysis of energy use and input costs for cotton production in Turkey," Renewable Energy, Elsevier, vol. 30(2), pages 145-155.
    14. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    15. David Pimentel, 2009. "Energy Inputs in Food Crop Production in Developing and Developed Nations," Energies, MDPI, vol. 2(1), pages 1-24, January.
    16. CAI, Fang & DU, Yang, 2011. "Wage increases, wage convergence, and the Lewis turning point in China," China Economic Review, Elsevier, vol. 22(4), pages 601-610.
    17. Sayin, Cengiz & Nisa Mencet, M. & Ozkan, Burhan, 2005. "Assessing of energy policies based on Turkish agriculture:: current status and some implications," Energy Policy, Elsevier, vol. 33(18), pages 2361-2373, December.
    18. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    19. Zhang, Xiaobo & Yang, Jin & Wang, Shenglin, 2011. "China has reached the Lewis turning point," China Economic Review, Elsevier, vol. 22(4), pages 542-554.
    20. Simon Jetté-Nantel & Wuyang Hu & Yumei Liu, 2020. "Economies of scale and mechanization in Chinese corn and wheat production," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2751-2765, May.
    21. Jie Tang & Jingjing Wang & Zhaoyang Li & Sining Wang & Yunke Qu, 2018. "Effects of Irrigation Regime and Nitrogen Fertilizer Management on CH 4 , N 2 O and CO 2 Emissions from Saline–Alkaline Paddy Fields in Northeast China," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    22. Eskandari, Hamdollah & Attar, Sajjad, 2015. "Energy comparison of two rice cultivation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 666-671.
    23. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    24. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    25. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    26. Ye, Sijing & Song, Changqing & Shen, Shi & Gao, Peichao & Cheng, Changxiu & Cheng, Feng & Wan, Changjun & Zhu, Dehai, 2020. "Spatial pattern of arable land-use intensity in China," Land Use Policy, Elsevier, vol. 99(C).
    27. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    28. Tianxiang Li & Wusheng Yu & Tomas Baležentis & Jing Zhu & Yueqing Ji, 2017. "Rural demographic change, rising wages and the restructuring of Chinese agriculture," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 9(4), pages 478-503, November.
    29. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    30. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    31. Ren, Lan Tian & Liu, Zu Xin & Wei, Tong Yang & Xie, Guang Hui, 2012. "Evaluation of energy input and output of sweet sorghum grown as a bioenergy crop on coastal saline-alkali land," Energy, Elsevier, vol. 47(1), pages 166-173.
    32. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingmiao Shao & Chunyu Gao & Patience Afi Seglah & Jie Xie & Li Zhao & Yuyun Bi & Yajing Wang, 2023. "Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
    2. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    2. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    3. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    4. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    5. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    6. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    7. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    8. Hossein Kazemi Author- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Iran, 2016. "Energy Balance in Modern Agroecosystems; Why and How?," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 101-104, June.
    9. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    10. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    11. Du, Xiangbei & He, Wenchang & Gao, Shangqin & Liu, Dong & Wu, Wenge & Tu, Debao & Kong, Lingcong & Xi, Min, 2022. "Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production," Energy, Elsevier, vol. 245(C).
    12. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    13. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    14. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    15. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    16. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    17. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    18. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    19. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.