IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220300402.html
   My bibliography  Save this article

An investigation of long range reliance on shale oil and shale gas production in the U.S. market

Author

Listed:
  • Solarin, Sakiru Adebola
  • Gil-Alana, Luis A.
  • Lafuente, Carmen

Abstract

Despite the rising profiles of both shale oil and shale gas plays in the U.S. and the importance of testing for their persistence, no study has examined the persistence of the availability of shale oil and shale gas plays in the country. This paper focuses on the analysis of shale oil and shale gas production using long range dependence techniques in the U.S. for the period, January 2000 to April 2019. The empirical findings illustrate that the series examined are highly persistent, finding very little evidence of mean reverting patterns. Among the implications of the results, which are discussed in the paper, is that there is a hysteresis in shale oil and gas production in U.S., and therefore shocks resulting from new government policies relating to shale oil and gas in U.S. will have lasting impacts on their production. Besides, it will not be feasible to use forecasting as a basic instrument for unconventional energy sources as the previous values of shale oil and gas production cannot be utilised to accurately forecast their subsequent values.

Suggested Citation

  • Solarin, Sakiru Adebola & Gil-Alana, Luis A. & Lafuente, Carmen, 2020. "An investigation of long range reliance on shale oil and shale gas production in the U.S. market," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300402
    DOI: 10.1016/j.energy.2020.116933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300402
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyth, Russell, 2013. "Are fluctuations in energy variables permanent or transitory? A survey of the literature on the integration properties of energy consumption and production," Applied Energy, Elsevier, vol. 104(C), pages 371-378.
    2. Fallahi, Firouz & Karimi, Mohammad & Voia, Marcel-Cristian, 2016. "Persistence in world energy consumption: Evidence from subsampling confidence intervals," Energy Economics, Elsevier, vol. 57(C), pages 175-183.
    3. Lutz Kilian, 2017. "The Impact of the Fracking Boom on Arab Oil Producers," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    4. Kumar Narayan, Paresh & Smyth, Russell, 2007. "Are shocks to energy consumption permanent or temporary? Evidence from 182 countries," Energy Policy, Elsevier, vol. 35(1), pages 333-341, January.
    5. Maslyuk, Svetlana & Smyth, Russell, 2009. "Non-linear unit root properties of crude oil production," Energy Economics, Elsevier, vol. 31(1), pages 109-118, January.
    6. Lutz Kilian, 2016. "The Impact of the Shale Oil Revolution on U.S. Oil and Gasoline Prices," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 185-205.
    7. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The great plunge in oil prices: causes, consequences, and policy responses," CAMA Working Papers 2015-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. repec:ipg:wpaper:2014-589 is not listed on IDEAS
    9. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    10. Benes, Jaromir & Chauvet, Marcelle & Kamenik, Ondra & Kumhof, Michael & Laxton, Douglas & Mursula, Susanna & Selody, Jack, 2015. "The future of oil: Geology versus technology," International Journal of Forecasting, Elsevier, vol. 31(1), pages 207-221.
    11. Minh-Thong Le, 2018. "An assessment of the potential for the development of the shale gas industry in countries outside of North America," Post-Print hal-01707908, HAL.
    12. Shahbaz, Muhammad & Khraief, Naceur & Mahalik, Mantu Kumar & Zaman, Khair Uz, 2014. "Are fluctuations in natural gas consumption per capita transitory? Evidence from time series and panel unit root tests," Energy, Elsevier, vol. 78(C), pages 183-195.
    13. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    14. Caporin, Massimiliano & Fontini, Fulvio, 2017. "The long-run oil–natural gas price relationship and the shale gas revolution," Energy Economics, Elsevier, vol. 64(C), pages 511-519.
    15. Narayan, Paresh Kumar & Narayan, Seema & Smyth, Russell, 2008. "Are oil shocks permanent or temporary? Panel data evidence from crude oil and NGL production in 60 countries," Energy Economics, Elsevier, vol. 30(3), pages 919-936, May.
    16. Hsu, Yi-Chung & Lee, Chien-Chiang & Lee, Chi-Chuan, 2008. "Revisited: Are shocks to energy consumption permanent or temporary? New evidence from a panel SURADF approach," Energy Economics, Elsevier, vol. 30(5), pages 2314-2330, September.
    17. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    18. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "U.S. shale oil production and WTI prices behaviour," Energy, Elsevier, vol. 141(C), pages 12-19.
    19. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    20. Solarin, Sakiru Adebola & Lean, Hooi Hooi, 2016. "Are fluctuations in oil consumption permanent or transitory? Evidence from linear and nonlinear unit root tests," Energy Policy, Elsevier, vol. 88(C), pages 262-270.
    21. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    22. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    23. Barros, Carlos P. & Gil-Alana, Luis A. & Wanke, Peter, 2016. "Energy production in Brazil: Empirical facts based on persistence, seasonality and breaks," Energy Economics, Elsevier, vol. 54(C), pages 88-95.
    24. Hu, Haiqing & Wei, Wei & Chang, Chun-Ping, 2019. "Do shale gas and oil productions move in convergence? An investigation using unit root tests with structural breaks," Economic Modelling, Elsevier, vol. 77(C), pages 21-33.
    25. Barros, Carlos Pestana & Gil-Alana, Luis A. & Payne, James E., 2011. "An analysis of oil production by OPEC countries: Persistence, breaks, and outliers," Energy Policy, Elsevier, vol. 39(1), pages 442-453, January.
    26. Afees Adebare Salisu & Idris A. Adediran, 2018. "The U.S. Shale Oil Revolution and the Behavior of Commodity Prices," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 3(1), pages 27-53, September.
    27. Cai, Yifei & Menegaki, Angeliki N., 2019. "Fourier quantile unit root test for the integrational properties of clean energy consumption in emerging economies," Energy Economics, Elsevier, vol. 78(C), pages 324-334.
    28. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    29. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 369-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. S. Liew & Kamaluddeen Usman Danyaro & Noor Amila Wan Abdullah Zawawi, 2020. "A Comprehensive Guide to Different Fracturing Technologies: A Review," Energies, MDPI, Open Access Journal, vol. 13(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300402. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.