IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v124y2017icp510-520.html
   My bibliography  Save this article

The macroeconomic effects of ambitious energy efficiency policy in Germany – Combining bottom-up energy modelling with a non-equilibrium macroeconomic model

Author

Listed:
  • Hartwig, Johannes
  • Kockat, Judit
  • Schade, Wolfgang
  • Braungardt, Sibylle

Abstract

Energy efficiency is one of the fastest and most cost-effective contributions to a sustainable, secure and affordable energy system. Furthermore, the so-called “non-energy benefits”, “co-benefits” or “multiple benefits” of energy efficiency are receiving increased interest from policy makers and the scientific community. Among the various non-energy benefits of energy efficiency initiatives, the macroeconomic benefits play an important role. Our study presents a detailed analysis of the long-term macroeconomic effects of German energy efficiency policy including the industry and service sectors as well as residential energy demand. We quantify the macroeconomic effects of an ambitious energy efficiency scenario by combining bottom-up models with an extended dynamic input-output model. We study sectoral shifts within the economy regarding value added and employment compared to the baseline scenario. We provide an in-depth analysis of the effects of energy efficiency policy on consumers, individual industry sectors, and the economy as a whole. We find significant positive macroeconomic effects resulting from energy efficiency initiatives, with growth effects for both GDP and employment ranging between 0.88% and 3.38%. Differences in sectoral gains lead to a shift in the economy. Our methodological approach provides a comprehensive framework for analyzing the macroeconomic benefits of energy efficiency.

Suggested Citation

  • Hartwig, Johannes & Kockat, Judit & Schade, Wolfgang & Braungardt, Sibylle, 2017. "The macroeconomic effects of ambitious energy efficiency policy in Germany – Combining bottom-up energy modelling with a non-equilibrium macroeconomic model," Energy, Elsevier, vol. 124(C), pages 510-520.
  • Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:510-520
    DOI: 10.1016/j.energy.2017.02.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302517
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    2. Scott, Michael J. & Roop, Joseph M. & Schultz, Robert W. & Anderson, David M. & Cort, Katherine A., 2008. "The impact of DOE building technology energy efficiency programs on U.S. employment, income, and investment," Energy Economics, Elsevier, vol. 30(5), pages 2283-2301, September.
    3. Dr. Ulrike Lehr & Dr. Christian Lutz & Dr. Martin Pehnt & Udo Lambrecht & Friedrich Seefeldt & Marco Wünsch & Barbara Schlomann & Tobias Fleiter, 2011. "20% by 2020? Economy-wide impacts of energy efficiency improvement in Germany," GWS Discussion Paper Series 11-2, GWS - Institute of Economic Structures Research.
    4. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    5. Rose, Adam, 1995. "Input-output economics and computable general equilibrium models," Structural Change and Economic Dynamics, Elsevier, vol. 6(3), pages 295-304, August.
    6. Diaz-Rainey, Ivan & Ashton, John K., 2015. "Investment inefficiency and the adoption of eco-innovations: The case of household energy efficiency technologies," Energy Policy, Elsevier, vol. 82(C), pages 105-117.
    7. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    8. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    9. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    10. Scrieciu, S. Serban, 2007. "The inherent dangers of using computable general equilibrium models as a single integrated modelling framework for sustainability impact assessment. A critical note on Bohringer and Loschel (2006)," Ecological Economics, Elsevier, vol. 60(4), pages 678-684, February.
    11. Johannes Hartwig & Judit Kockat, 2016. "Macroeconomic effects of energetic building retrofit: input-output sensitivity analyses," Construction Management and Economics, Taylor & Francis Journals, vol. 34(2), pages 79-97, February.
    12. Roberto Pietroforte & Tullio Gregori, 2003. "An input-output analysis of the construction sector in highly developed economies," Construction Management and Economics, Taylor & Francis Journals, vol. 21(3), pages 319-327.
    13. Bertoldi, Paolo & Rezessy, Silvia & Oikonomou, Vlasis, 2013. "Rewarding energy savings rather than energy efficiency: Exploring the concept of a feed-in tariff for energy savings," Energy Policy, Elsevier, vol. 56(C), pages 526-535.
    14. Capros, Pantelis & Karadeloglou, Pavlos & Mentzas, Gregory, 1991. "Market imperfections in a general equilibrium framework : An empirical analysis," Economic Modelling, Elsevier, vol. 8(1), pages 116-128, January.
    15. Intriligator, Michael D., 1983. "Economic and econometric models," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 3, pages 181-221 Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:enepol:v:120:y:2018:i:c:p:24-37 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:510-520. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.