IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v67y2014icp781-796.html
   My bibliography  Save this article

Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies

Author

Listed:
  • Roelfsema, Mark
  • Elzen, Michel den
  • Höhne, Niklas
  • Hof, Andries F.
  • Braun, Nadine
  • Fekete, Hanna
  • Böttcher, Hannes
  • Brandsma, Ruut
  • Larkin, Julia

Abstract

Many of the major greenhouse gas emitting countries have planned and/or implemented domestic mitigation policies, such as carbon taxes, feed-in tariffs, or standards. This study analyses whether the most effective national climate and energy policies are sufficient to stay on track for meeting the emission reduction proposals (pledges) that countries made for 2020. The analysis shows that domestic policies of India, China and Russia are projected to lead to lower emission levels than the pledged levels. Australia's and the EU's nationally legally binding policy framework is likely to deliver their unconditional pledges, but not the conditional ones. The situation is rather unclear for Japan, South Korea, Brazil and Indonesia. We project that policies of Canada and the USA will reduce 2020 emission levels, but additional policies are probably needed to deliver their pledges in full. The analysis also shows that countries are implementing policies or targets in various areas to a varying degree: all major countries have set renewable energy targets; many have recently implemented efficiency standards for cars, and new emission trading systems are emerging.

Suggested Citation

  • Roelfsema, Mark & Elzen, Michel den & Höhne, Niklas & Hof, Andries F. & Braun, Nadine & Fekete, Hanna & Böttcher, Hannes & Brandsma, Ruut & Larkin, Julia, 2014. "Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies," Energy Policy, Elsevier, vol. 67(C), pages 781-796.
  • Handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:781-796
    DOI: 10.1016/j.enpol.2013.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513011853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacomo Grassi & Michel Elzen & Andries Hof & Roberto Pilli & Sandro Federici, 2012. "The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges," Climatic Change, Springer, vol. 115(3), pages 873-881, December.
    2. Terry Townshend & Sam Fankhauser & Adam Matthews & Clément Feger & Jin Liu & Thais Narciso, 2011. "GLOBE climate legislation study," Working Papers hal-01930971, HAL.
    3. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    4. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    5. Deetman, Sebastiaan & Hof, Andries F. & Pfluger, Benjamin & van Vuuren, Detlef P. & Girod, Bastien & van Ruijven, Bas J., 2013. "Deep greenhouse gas emission reductions in Europe: Exploring different options," Energy Policy, Elsevier, vol. 55(C), pages 152-164.
    6. den Elzen, Michel G.J. & Hof, Andries F. & Roelfsema, Mark, 2013. "Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020," Energy Policy, Elsevier, vol. 56(C), pages 633-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    2. Michel Elzen & Annemiek Admiraal & Mark Roelfsema & Heleen Soest & Andries F. Hof & Nicklas Forsell, 2016. "Contribution of the G20 economies to the global impact of the Paris agreement climate proposals," Climatic Change, Springer, vol. 137(3), pages 655-665, August.
    3. Heleen L. van Soest & Harmen Sytze de Boer & Mark Roelfsema & Michel G.J. den Elzen & Annemiek Admiraal & Detlef P. van Vuuren & Andries F. Hof & Maarten van den Berg & Mathijs J.H.M. Harmsen & David , 2017. "Early action on Paris Agreement allows for more time to change energy systems," Climatic Change, Springer, vol. 144(2), pages 165-179, September.
    4. Vera, Sonia & Sauma, Enzo, 2015. "Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chile," Energy, Elsevier, vol. 88(C), pages 478-488.
    5. Piero Morseletto & Frank Biermann & Philipp Pattberg, 2017. "Governing by targets: reductio ad unum and evolution of the two-degree climate target," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 17(5), pages 655-676, October.
    6. Li, Jun & Hamdi-Cherif, Meriem & Cassen, Christophe, 2017. "Aligning domestic policies with international coordination in a post-Paris global climate regime: A case for China," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 258-274.
    7. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    8. Corey J. A. Bradshaw & Barry W. Brook, 2016. "Implications of Australia's Population Policy for Future Greenhouse Gas Emissions Targets," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 3(2), pages 249-265, May.
    9. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    10. Schleich, Joachim & Faure, Corinne, 2017. "Explaining citizens’ perceptions of international climate-policy relevance," Energy Policy, Elsevier, vol. 103(C), pages 62-71.
    11. Heleen van Soest & Lara Aleluia Reis & Detlef van Vuuren & Christoph Bertram & Laurent Drouet & Jessica Jewell & Elmar Kriegler & Gunnar Luderer & Keywan Riahi & Joeri Rogelj & Massimo Tavoni & Michel, 2015. "Regional Low-Emission Pathways from Global Models," Working Papers 2015.110, Fondazione Eni Enrico Mattei.
    12. Sakamoto, Tomoyuki & Takase, Kae & Matsuhashi, Ryuji & Managi, Shunsuke, 2016. "Baseline of the projection under a structural change in energy demand," Energy Policy, Elsevier, vol. 98(C), pages 274-289.
    13. Fekete, Hanna & Kuramochi, Takeshi & Roelfsema, Mark & Elzen, Michel den & Forsell, Nicklas & Höhne, Niklas & Luna, Lisa & Hans, Frederic & Sterl, Sebastian & Olivier, Jos & van Soest, Heleen & Frank,, 2021. "A review of successful climate change mitigation policies in major emitting economies and the potential of global replication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    2. Girod, Bastien & van Vuuren, Detlef P. & de Vries, Bert, 2013. "Influence of travel behavior on global CO2 emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 183-197.
    3. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    4. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    5. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    6. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    7. Yan Lu & Haikun Wang & Qin’geng Wang & Yanyan Zhang & Yiyong Yu & Yu Qian, 2017. "Global anthropogenic heat emissions from energy consumption, 1965–2100," Climatic Change, Springer, vol. 145(3), pages 459-468, December.
    8. Céline Guivarch, 2012. "2°C or not 2°C?," Post-Print halshs-00757079, HAL.
    9. Vladimir F. Krapivin & Costas A. Varotsos & Vladimir Yu. Soldatov, 2017. "The Earth’s Population Can Reach 14 Billion in the 23rd Century without Significant Adverse Effects on Survivability," IJERPH, MDPI, vol. 14(8), pages 1-19, August.
    10. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    11. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    12. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    13. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    14. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    15. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    16. Bing-Chen Jhong & Ching-Pin Tung, 2018. "Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4253-4274, October.
    17. Beatriz Calzada Olvera, 2014. "The Millennium Development Goals after 2015: A Proposal for 2015-2030," Competence Centre on Money, Trade, Finance and Development 1401, Hochschule fuer Technik und Wirtschaft, Berlin.
    18. Ji Han & Xing Meng & Yanqi Zhang & Jiabin Liu, 2017. "The Impact of Infrastructure Stock Density on CO 2 Emissions: Evidence from China Provinces," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    19. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    20. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:781-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.