IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i9p5048-5058.html
   My bibliography  Save this article

Revisiting the case for intensity targets: Better incentives and less uncertainty for developing countries

Author

Listed:
  • Marschinski, Robert
  • Edenhofer, Ottmar

Abstract

In the debate on post-Kyoto global climate policy, intensity targets, which set a maximum amount of emissions per GDP, figure as prominent alternative to Kyoto-style absolute emission targets, especially for developing countries. This paper re-examines the case for intensity targets by critically assessing several of its properties, namely (i) reduction of cost-uncertainty, (ii) reduction of 'hot air', (iii) compatibility with international emissions trading, (iv) incentive to decouple carbon emissions and economic output (decarbonization), and, (v) use as a substitute for banking/borrowing. Relying on simple analytical models, it is shown that the effect on cost-uncertainty is ambiguous and depends on parameter values, and that the same holds for the risk of 'hot air'; that the intensity target distorts international emissions trading; that despite potential asymmetries in the choice of abatement technology between absolute and intensity target, the incentive for a lasting transformation of the energy system is not necessarily stronger under the latter; and, finally, that only a well-working intensity target could substitute banking/borrowing to some extent--but also vice versa. Overall, the results suggest that due to the increased complexity and the potentially only modest benefits of an intensity target, absolute targets remain a robust choice for a cautious policy maker.

Suggested Citation

  • Marschinski, Robert & Edenhofer, Ottmar, 2010. "Revisiting the case for intensity targets: Better incentives and less uncertainty for developing countries," Energy Policy, Elsevier, vol. 38(9), pages 5048-5058, September.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:5048-5058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00307-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldy,Joseph E. & Stavins,Robert N. (ed.), 2007. "Architectures for Agreement," Cambridge Books, Cambridge University Press, number 9780521871631.
    2. C�dric Philibert & Jonathan Pershing, 2001. "Considering the options: climate targets for all countries," Climate Policy, Taylor & Francis Journals, vol. 1(2), pages 211-227, June.
    3. Frank Jotzo & John Pezzey, 2007. "Optimal intensity targets for greenhouse gas emissions trading under uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(2), pages 259-284, October.
    4. Carolyn Fischer, 2003. "Combining rate-based and cap-and-trade emissions policies," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 89-103, December.
    5. William A. Pizer, 2005. "The case for intensity targets," Climate Policy, Taylor & Francis Journals, vol. 5(4), pages 455-462, July.
    6. Quirion, Philippe, 2005. "Does uncertainty justify intensity emission caps?," Resource and Energy Economics, Elsevier, vol. 27(4), pages 343-353, November.
    7. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele, 2009. "Banking permits: Economic efficiency and distributional effects," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 382-403, May.
    8. Marschinski, Robert & Lecocq, Franck, 2006. "Do intensity targets control uncertainty better than quotas ? Conditions, calibrations, and caveats," Policy Research Working Paper Series 4033, The World Bank.
    9. Neil Strachan, 2007. "Setting greenhouse gas emission targets under baseline uncertainty: the Bush Climate Change Initiative," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 455-470, May.
    10. Kolstad, Charles D., 2005. "The simple analytics of greenhouse gas emission intensity reduction targets," Energy Policy, Elsevier, vol. 33(17), pages 2231-2236, November.
    11. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    12. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    13. Roger Guesnerie & Henry Tulkens, 2009. "The Design of Climate Policy," PSE-Ecole d'économie de Paris (Postprint) halshs-00754871, HAL.
    14. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    15. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    16. Newell, Richard G. & Pizer, William A., 2008. "Indexed regulation," Journal of Environmental Economics and Management, Elsevier, vol. 56(3), pages 221-233, November.
    17. Boemare, Catherine & Quirion, Philippe, 2002. "Implementing greenhouse gas trading in Europe: lessons from economic literature and international experiences," Ecological Economics, Elsevier, vol. 43(2-3), pages 213-230, December.
    18. Huifang Tian & John Whalley, 2009. "Level versus Equivalent Intensity Carbon Mitigation Commitments," NBER Working Papers 15370, National Bureau of Economic Research, Inc.
    19. Sonja Peterson, 2008. "Intensity targets: implications for the economic uncertainties of emissions trading," Springer Books, in: Bernd Hansjürgens & Ralf Antes (ed.), Economics and Management of Climate Change, pages 97-110, Springer.
    20. Aldy,Joseph E. & Stavins,Robert N. (ed.), 2007. "Architectures for Agreement," Cambridge Books, Cambridge University Press, number 9780521692175.
    21. Flachsland, Christian & Marschinski, Robert & Edenhofer, Ottmar, 2009. "Global trading versus linking: Architectures for international emissions trading," Energy Policy, Elsevier, vol. 37(5), pages 1637-1647, May.
    22. A. Denny Ellerman & Ian Sue Wing, 2003. "Absolute versus intensity-based emission caps," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 7-20, December.
    23. Aldy,Joseph E. & Stavins,Robert N. (ed.), 2009. "Post-Kyoto International Climate Policy," Cambridge Books, Cambridge University Press, number 9780521129527.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Branger & Philippe Quirion, 2014. "Price versus Quantities versus Indexed Quantities," Working Papers 2014.09, FAERE - French Association of Environmental and Resource Economists.
    2. Tao Pang & Maosheng Duan, 2016. "Cap setting and allowance allocation in China's emissions trading pilot programmes: special issues and innovative solutions," Climate Policy, Taylor & Francis Journals, vol. 16(7), pages 815-835, October.
    3. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    4. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    5. Jinhua Zhao, 2022. "Aggregate emission intensity targets: Applications to the Paris Agreement," Economic Inquiry, Western Economic Association International, vol. 60(4), pages 1875-1897, October.
    6. Neil J. Buckley & Stuart Mestelman & R. Andrew Muller, 2014. "Production Capacity and Abatement Technology Strategies in Emissions Trading Markets," Department of Economics Working Papers 2014-16, McMaster University.
    7. Yiyong Cai & Yingying Lu & David Newth & Alison Stegman, 2013. "Modelling Complex Emissions Intensity Targets with a Simple Simulation Algorithm," CAMA Working Papers 2013-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Lu, Yingying & Stegman, Alison & Cai, Yiyong, 2013. "Emissions intensity targeting: From China's 12th Five Year Plan to its Copenhagen commitment," Energy Policy, Elsevier, vol. 61(C), pages 1164-1177.
    9. Rodríguez, Miguel & Pena-Boquete, Yolanda, 2017. "Carbon intensity changes in the Asian Dragons. Lessons for climate policy design," Energy Economics, Elsevier, vol. 66(C), pages 17-26.
    10. Yiyong Cai & Yingying Lu & Alison Stegman & David Newth, 2017. "Simulating emissions intensity targets with energy economic models: algorithm and application," Annals of Operations Research, Springer, vol. 255(1), pages 141-155, August.
    11. Mariana Conte Grand, 2016. "GDP-related emission targets weaknesses: the case of Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 599, Universidad del CEMA.
    12. Hossa Almutairi & Samir Elhedhli, 2014. "Carbon tax based on the emission factor: a bilevel programming approach," Journal of Global Optimization, Springer, vol. 58(4), pages 795-815, April.
    13. Vicki Duscha & Karl-Martin Ehrhart, 2016. "Incentives and Effects of No-Lose Targets to Include Non-Annex I Countries in Global Emission Reductions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 81-107, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    2. Jinhua Zhao, 2022. "Aggregate emission intensity targets: Applications to the Paris Agreement," Economic Inquiry, Western Economic Association International, vol. 60(4), pages 1875-1897, October.
    3. Gilbert E. Metcalf & David Weisbach, 2012. "Linking Policies When Tastes Differ: Global Climate Policy in a Heterogeneous World," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 110-129.
    4. Branger, Frédéric & Quirion, Philippe, 2014. "Price versus Quantities versus Indexed Quantities," Climate Change and Sustainable Development 187277, Fondazione Eni Enrico Mattei (FEEM).
    5. Newell, Richard G. & Pizer, William A., 2008. "Indexed regulation," Journal of Environmental Economics and Management, Elsevier, vol. 56(3), pages 221-233, November.
    6. Hossa Almutairi & Samir Elhedhli, 2014. "Carbon tax based on the emission factor: a bilevel programming approach," Journal of Global Optimization, Springer, vol. 58(4), pages 795-815, April.
    7. Joseph E. Aldy & William A. Pizer, 2009. "Issues in Designing U.S. Climate Change Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 179-210.
    8. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Frank Jotzo & John C. V. Pezzey, 2005. "Optimal intensity targets for emissions trading under uncertainty (now replaced by EEN0605)," Economics and Environment Network Working Papers 0504, Australian National University, Economics and Environment Network.
    10. Pezzey, John C.V. & Jotzo, Frank, 2010. "Tax-Versus-Trading and Free Emission Shares as Issues for Climate Policy Design," Research Reports 95049, Australian National University, Environmental Economics Research Hub.
    11. Annicchiarico, Barbara & Di Dio, Fabio, 2015. "Environmental policy and macroeconomic dynamics in a new Keynesian model," Journal of Environmental Economics and Management, Elsevier, vol. 69(C), pages 1-21.
    12. Frank Jotzo & John C. V. Pezzey, 2006. "Optimal Intensity Targets for Greenhouse Emissions Trading Under Uncertainty," Economics and Environment Network Working Papers 0605, Australian National University, Economics and Environment Network.
    13. Philippe Quirion, 2022. "Output-based allocation and output-based rebates: a survey," Chapters, in: Handbook on Trade Policy and Climate Change, chapter 7, pages 94-107, Edward Elgar Publishing.
    14. Kato, Shinya & Takeuchi, Kenji, 2017. "A CGE analysis of a rate-based policy for climate change mitigation," Journal of the Japanese and International Economies, Elsevier, vol. 43(C), pages 88-95.
    15. Shreekar Pradhan & S. Holladay & M. Mohsin, 2017. "Environmental Policy Instruments Response to Trade Shocks," EcoMod2017 10233, EcoMod.
    16. Edvardsson Björnberg, Karin, 2013. "Rational climate mitigation goals," Energy Policy, Elsevier, vol. 56(C), pages 285-292.
    17. Shreekar Pradhan & J. Scott Holladay & Mohammed Mohsin & Shreekar Pradhan, 2015. "Environmental Policy Instruments and Uncertainties Under Free Trade and Capital Mobility," EcoMod2015 8102, EcoMod.
    18. Olli-Pekka Kuuselaa & Gregory S. Amacher & Kwok Ping Tsang, 2013. "Intensity-Based Permit Quotas and the Business Cycle: Does Flexibility Pay Off?," Research Department Publications IDB-WP-450, Inter-American Development Bank, Research Department.
    19. Burtraw, Dallas & Palmer, Karen & Kahn, Danny, 2010. "A symmetric safety valve," Energy Policy, Elsevier, vol. 38(9), pages 4921-4932, September.
    20. Meunier, Guy & Montero, Juan-Pablo & Ponssard, Jean-Pierre, 2018. "Output-based allocations in pollution markets with uncertainty and self-selection," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 832-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:9:p:5048-5058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.