IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v154y2021ics0301421521001816.html
   My bibliography  Save this article

Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan

Author

Listed:
  • Zhu, Runqing
  • Lin, Boqiang

Abstract

The mining industry is one of the basic industries in China that ensures energy security. However, the mining industry's energy consumption is huge. It is, therefore, significant to improve the mining industry's energy and carbon performance. This paper adopts the non-radial directional distance function (NDDF) to measure the energy and carbon performance (ECP) of China's mining industry. It uses the metafrontier Malmquist index (MML) to disassemble the mining industry's ECP into three components to explore the driving factors during the 11th and 12th five-year plan. The empirical results reflect that although the mining industry's ECP is improved during two plan periods, technological progress does not have an obvious contribution to the ECP improvement. This means the mining sector lacks the innovation effect. As for policymaking, the government should support the mining sector's technological innovation, reduce surplus capacity, and open mineral markets.

Suggested Citation

  • Zhu, Runqing & Lin, Boqiang, 2021. "Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan," Energy Policy, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:enepol:v:154:y:2021:i:c:s0301421521001816
    DOI: 10.1016/j.enpol.2021.112312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521001816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    2. William L. Weber & Bruce Domazlicky, 2001. "Productivity Growth and Pollution in State Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 195-199, February.
    3. Yihsu Chen, Makoto Tanaka, and Afzal S. Siddiqui, 2018. "Market Power with Tradable Performance-Based CO2 Emission Standards in the Electricity Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    4. Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
    5. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
    8. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    9. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    10. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    11. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    12. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    13. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    14. Zhang, Ping & Shi, XunPeng & Sun, YongPing & Cui, Jingbo & Shao, Shuai, 2019. "Have China's provinces achieved their targets of energy intensity reduction? Reassessment based on nighttime lighting data," Energy Policy, Elsevier, vol. 128(C), pages 276-283.
    15. Livingstone Senyonga and Olvar Bergland, 2018. "Impact of High-Powered Incentive Regulations on Efficiency and Productivity Growth of Norwegian Electricity Utilities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    16. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    17. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Li, Yanfei & Ji, Qiang & Zhang, Dayong, 2020. "Technological catching up and innovation policies in China: What is behind this largely successful story?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Tan, Ruipeng & Lin, Boqiang & Liu, Xiying, 2019. "Impacts of eliminating the factor distortions on energy efficiency—A focus on China's secondary industry," Energy, Elsevier, vol. 183(C), pages 693-701.
    20. Qi, Xiaoyan & Guo, Pibin & Guo, Yanshan & Liu, Xiuli & Zhou, Xijun, 2020. "Understanding energy efficiency and its drivers: An empirical analysis of China’s 14 coal intensive industries," Energy, Elsevier, vol. 190(C).
    21. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    22. Kenichi Matsumoto, Yosuke Shigetomi, Hiroto Shiraki, Yuki Ochi, Yuki Ogawa, and Tomoki Ehara, 2019. "Addressing Key Drivers of Regional CO2 Emissions of the Manufacturing Industry in Japan," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    23. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    24. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    25. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    26. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    27. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    28. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    29. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    30. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos E., 2023. "Environmental productivity growth across European industries," Energy Economics, Elsevier, vol. 123(C).
    2. Xu, Chong, 2023. "Towards balanced low-carbon development: Driver and complex network of urban-rural energy-carbon performance gap in China," Applied Energy, Elsevier, vol. 333(C).
    3. Pan Wu & Guoyan Zhao & Yang Li, 2022. "Green Mining Strategy Selection via an Integrated SWOT-PEST Analysis and Fuzzy AHP-MARCOS Approach," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    4. Dong, Zhaoyingzi & Wang, Shaojian & Zhang, Weiwen & Shen, Huijun, 2022. "The dynamic effect of environmental regulation on firms’ energy consumption behavior-Evidence from China's industrial firms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    6. Runqing Zhu & Boqiang Lin, 2022. "How Does the Carbon Tax Influence the Energy and Carbon Performance of China’s Mining Industry?," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    7. Yanyang Yan & Juan Wang & Sijia Qiao, 2022. "Effects of Industrial Policy on Firms’ Innovation Outputs: Evidence From China," SAGE Open, , vol. 12(3), pages 21582440221, September.
    8. Lin, Boqiang & Wu, Nan, 2023. "Climate risk disclosure and stock price crash risk: The case of China," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 21-34.
    9. Yelin Dai & Yue Liu & Xuhui Ding & Chundu Wu & Yu Chen, 2022. "Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 19(16), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    2. Nabavieh, Alireza & Gholamiangonabadi, Davoud & Ahangaran, Ali Asghar, 2015. "Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants," Energy Economics, Elsevier, vol. 52(PA), pages 142-150.
    3. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    4. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    5. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    6. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    7. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    8. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    9. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    10. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    11. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    12. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    13. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    14. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    15. Du, Zhili & Wang, Yao, 2022. "Does energy-saving and emission reduction policy affects carbon reduction performance? A quasi-experimental evidence in China," Applied Energy, Elsevier, vol. 324(C).
    16. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    17. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    18. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    19. Ying Xie & Minglong Zhang, 2023. "Influence of Clean Energy and Financial Structure on China’s Provincial Carbon Emission Efficiency—Empirical Analysis Based on Spatial Spillover Effects," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    20. Fei, Rilong & Lin, Boqiang, 2017. "The integrated efficiency of inputs–outputs and energy – CO2 emissions performance of China's agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 668-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:154:y:2021:i:c:s0301421521001816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.