IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v134y2019ics0301421519305269.html
   My bibliography  Save this article

Policy implications for achieving the carbon emission reduction target by 2030 in Japan-Analysis based on a bilevel equilibrium model

Author

Listed:
  • Xu, Zhongwen
  • Yao, Liming
  • Liu, Qiaoling
  • Long, Yin

Abstract

In Japan, the National Intended Determined Contributions (INDCs) towards post-2020 GHG emission reductions indicates a reduction of 26.0% is expected by the fiscal year 2030. However, regional emissions allowances have not been fully discussed based on Japan's INDCs target, which considers the regional socio-economic features. Given this, this study points out a soft-path for a fair and efficient quota allocation by proposing an integrated bilevel equilibrium model within a hierarchical structure consisting of the national government and 47 prefectural governments. This proposed model can be changed into a single level solvable equilibrium model, which can be solved by Particle Swarm Optimization (PSO) method. The major findings show that Hokkaido, Tokyo and Osaka were allowed the largest emissions quotas, while Tottori, Saga and Okinawa had the lowest emissions quotas. And the equity is necessary to be considered along with improving the emissions efficiency when reallocating carbon emission quotas, otherwise, the initiative to reduce emissions will not take place in prefectures with higher efficiency performance. Based on the findings, energy policy implications can be generated based on the above quantitative analysis to form a fair and efficient emission quota system at a sub-national level.

Suggested Citation

  • Xu, Zhongwen & Yao, Liming & Liu, Qiaoling & Long, Yin, 2019. "Policy implications for achieving the carbon emission reduction target by 2030 in Japan-Analysis based on a bilevel equilibrium model," Energy Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305269
    DOI: 10.1016/j.enpol.2019.110939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519305269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    2. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    3. T. Ermolieva & Y. Ermoliev & M. Jonas & M. Obersteiner & F. Wagner & W. Winiwarter, 2014. "Uncertainty, cost-effectiveness and environmental safety of robust carbon trading: integrated approach," Climatic Change, Springer, vol. 124(3), pages 633-646, June.
    4. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    5. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    6. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    7. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    8. Toshihiko Masui & Yuzuru Matsuoka & Mikiko Kainuma, 2006. "Long-term CO 2 emission reduction scenarios in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 347-366, September.
    9. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    10. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    11. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    12. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    13. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    14. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    15. Kaoru Tone & Miki Tsutsui, 2010. "An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency," GRIPS Discussion Papers 09-21, National Graduate Institute for Policy Studies.
    16. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    17. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    18. Su, Xuanming & Zhou, Weisheng & Sun, Faming & Nakagami, Ken'Ichi, 2014. "Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030," Energy, Elsevier, vol. 66(C), pages 90-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Shuhua & Xu, Jiuping & Yao, Liming, 2021. "Integrated environmental policy instruments driven river water pollution management decision system," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    2. Sensen Zhang & Zhenggang Huo, 2023. "Analysis of Spatial Correlation and Influencing Factors of Building a Carbon Emission Reduction Potential Network Based on the Coordination of Equity and Efficiency," Sustainability, MDPI, vol. 15(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    2. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    3. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    4. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    5. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    6. Jianguo Zhou & Yushuo Li & Xuejing Huo & Xiaolei Xu, 2019. "How to Allocate Carbon Emission Permits Among China’s Industrial Sectors Under the Constraint of Carbon Intensity?," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    7. Chang, Kai & Zhang, Chao & Chang, Hao, 2016. "Emissions reduction allocation and economic welfare estimation through interregional emissions trading in China: Evidence from efficiency and equity," Energy, Elsevier, vol. 113(C), pages 1125-1135.
    8. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
    9. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    10. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    11. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    12. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    13. Kejia Yang & Yalin Lei & Weiming Chen & Lingna Liu, 2018. "Carbon dioxide emission reduction quota allocation study on Chinese provinces based on two-stage Shapley information entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 321-335, March.
    14. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    15. Guoyu Wang & Jinsheng Zhou, 2022. "Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    16. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    17. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    18. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    19. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    20. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:134:y:2019:i:c:s0301421519305269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.