IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v104y2017icp89-99.html
   My bibliography  Save this article

Socio-political prioritization of bioenergy with carbon capture and storage

Author

Listed:
  • Fridahl, Mathias

Abstract

Limiting global warming to well below 2°C requires the transformation of the global energy system at a scale unprecedented since the industrial revolution. To meet this 2°C goal, 87% of integrated assessment models opt for using bioenergy with carbon capture and storage (BECCS). Without BECCS, the models predict that the goal will be either unachievable or substantially more costly to meet. While the modeling literature is extensive, studies of how key climate policy actors perceive and prioritize BECCS are sparse. This article provides a unique intercontinental mapping of the prioritization of BECCS for the long term transition of the electricity supply sector. Based on survey responses from 711 UN climate change conference delegates, the article reports the low prioritization of BECCS relative to alternative technologies, indicating an urgent need for studies of the socio-political preconditions for large-scale BECCS deployment.

Suggested Citation

  • Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
  • Handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:89-99
    DOI: 10.1016/j.enpol.2017.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    2. Stefan Grönkvist & Kenneth Möllersten & Kim Pingoud, 2006. "Equal Opportunity for Biomass in Greenhouse Gas Accounting of CO 2 Capture and Storage: A Step Towards More Cost-Effective Climate Change Mitigation Regimes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1083-1096, September.
    3. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    4. Iea, 2011. "Combining Bioenergy with CCS: Reporting and Accounting for Negative Emissions under UNFCCC and the Kyoto Protocol," IEA Energy Papers 2011/16, OECD Publishing.
    5. Nasiritousi, Naghmeh & Hjerpe, Mattias & Buhr, Katarina, 2014. "Pluralising climate change solutions? Views held and voiced by participants at the international climate change negotiations," Ecological Economics, Elsevier, vol. 105(C), pages 177-184.
    6. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    7. Mathias Friman & Mattias Hjerpe, 2015. "Agreement, significance, and understandings of historical responsibility in climate change negotiations," Climate Policy, Taylor & Francis Journals, vol. 15(3), pages 302-320, May.
    8. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    9. Azar, Christian & Holmberg, John, 1995. "Defining the generational environmental debt," Ecological Economics, Elsevier, vol. 14(1), pages 7-19, July.
    10. Phil Williamson, 2016. "Emissions reduction: Scrutinize CO2 removal methods," Nature, Nature, vol. 530(7589), pages 153-155, February.
    11. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    12. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    13. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    14. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
    15. Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.
    16. Söderberg, Charlotta & Eckerberg, Katarina, 2013. "Rising policy conflicts in Europe over bioenergy and forestry," Forest Policy and Economics, Elsevier, vol. 33(C), pages 112-119.
    17. van Dam, J. & Junginger, M., 2011. "Striving to further harmonization of sustainability criteria for bioenergy in Europe: Recommendations from a stakeholder questionnaire," Energy Policy, Elsevier, vol. 39(7), pages 4051-4066, July.
    18. Sanchez, Daniel L. & Callaway, Duncan S., 2016. "Optimal scale of carbon-negative energy facilities," Applied Energy, Elsevier, vol. 170(C), pages 437-444.
    19. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    20. Mattias Hjerpe & Naghmeh Nasiritousi, 2015. "Views on alternative forums for effectively tackling climate change," Nature Climate Change, Nature, vol. 5(9), pages 864-867, September.
    21. Steve Rayner & Clare Heyward & Tim Kruger & Nick Pidgeon & Catherine Redgwell & Julian Savulescu, 2013. "The Oxford Principles," Climatic Change, Springer, vol. 121(3), pages 499-512, December.
    22. Clair Gough & Paul Upham, 2011. "Biomass energy with carbon capture and storage (BECCS or Bio‐CCS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(4), pages 324-334, December.
    23. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katherine Romanak & Mathias Fridahl & Tim Dixon, 2021. "Attitudes on Carbon Capture and Storage (CCS) as a Mitigation Technology within the UNFCCC," Energies, MDPI, vol. 14(3), pages 1-16, January.
    2. Gianluca Stefani & Mario Biggeri & Lucia Ferrone, 2022. "Sustainable Transitions Narratives: An Analysis of the Literature through Topic Modelling," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    3. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    5. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    6. Wähling, Lara-Sophie & Fridahl, Mathias & Heimann, Tobias & Merk, Christine, 2023. "The sequence matters: Expert opinions on policy mechanisms for bioenergy with carbon capture and storage," Open Access Publications from Kiel Institute for the World Economy 275739, Kiel Institute for the World Economy (IfW Kiel).
    7. Laurie Waller & Tim Rayner & Jason Chilvers & Clair Amanda Gough & Irene Lorenzoni & Andrew Jordan & Naomi Vaughan, 2020. "Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    8. Nehil Shreyash & Muskan Sonker & Sushant Bajpai & Saurabh Kr Tiwary & Mohd Ashhar Khan & Subham Raj & Tushar Sharma & Susham Biswas, 2021. "The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization," Energies, MDPI, vol. 14(16), pages 1-34, August.
    9. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    10. Lin, Boqiang & Jia, Zhijie, 2018. "Impact of quota decline scheme of emission trading in China: A dynamic recursive CGE model," Energy, Elsevier, vol. 149(C), pages 190-203.
    11. Cristina Aracil & Ángel L. Villanueva Perales & Jacopo Giuntoli & Jorge Cristóbal & Pedro Haro, 2023. "The Role of Renewable-Derived Plastics in the Analysis of Waste Management Schemes: A Time-Dependent Carbon Cycle Assessment," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    12. Zhang, Lirong & Li, Yakun & Jia, Zhijie, 2018. "Impact of carbon allowance allocation on power industry in China’s carbon trading market: Computable general equilibrium based analysis," Applied Energy, Elsevier, vol. 229(C), pages 814-827.
    13. Angelica Rutherford, 2022. "The Application of the Environment Act 2021 Principles to Carbon Capture and Storage," Laws, MDPI, vol. 11(1), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    2. Vassilis Stavrakas & Niki-Artemis Spyridaki & Alexandros Flamos, 2018. "Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs," Sustainability, MDPI, vol. 10(7), pages 1-27, June.
    3. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    4. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    5. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    6. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    7. Laurie Waller & Tim Rayner & Jason Chilvers & Clair Amanda Gough & Irene Lorenzoni & Andrew Jordan & Naomi Vaughan, 2020. "Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    8. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    9. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    10. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    11. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    12. Hassan Qudrat-Ullah & Mark McCarthy Akrofi & Aymen Kayal, 2020. "Analyzing Actors’ Engagement in Sustainable Energy Planning at the Local Level in Ghana: An Empirical Study," Energies, MDPI, vol. 13(8), pages 1-20, April.
    13. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    16. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    17. Sara Helen Kaweesa & Hamid El Bilali & Willibald Loiskandl, 2021. "Analysing the socio-technical transition to conservation agriculture in Uganda through the lens of the multi-level perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7606-7626, May.
    18. Tyfield, David & Zuev, Dennis, 2018. "Stasis, dynamism and emergence of the e-mobility system in China: A power relational perspective," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 259-270.
    19. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    20. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:89-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.