IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v94y2021ics014098832030414x.html
   My bibliography  Save this article

Real-time electricity pricing to balance green energy intermittency

Author

Listed:
  • Ambec, Stefan
  • Crampes, Claude

Abstract

The presence of consumers able to respond to changes in wholesale electricity prices facilitates the penetration of renewable intermittent sources of energy such as wind or sun power. We investigate how adapting demand to intermittent electricity supply by making consumers price-responsive - thanks to smart meters and home automation appliances - impacts the energy mix. We show that it almost always reduces carbon emissions. Furthermore, when consumers are not too risk-averse, demand response is socially beneficial because the loss from exposing consumers to volatile prices is more than offset by lower production and environmental costs. However, the gain is decreasing when the proportion of reactive consumers increases. Therefore, depending on the costs of the necessary smart hardware, it may be non-optimal to equip the whole population.

Suggested Citation

  • Ambec, Stefan & Crampes, Claude, 2021. "Real-time electricity pricing to balance green energy intermittency," Energy Economics, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:eneeco:v:94:y:2021:i:c:s014098832030414x
    DOI: 10.1016/j.eneco.2020.105074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832030414X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.105074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Joskow & Jean Tirole, 2007. "Reliability and competitive electricity markets," RAND Journal of Economics, RAND Corporation, vol. 38(1), pages 60-84, March.
    2. Ambec, Stefan & Coria, Jessica, 2018. "Policy spillovers in the regulation of multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 114-134.
    3. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    4. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    5. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    6. Qiu, Yueming & Colson, Gregory & Wetzstein, Michael E., 2017. "Risk preference and adverse selection for participation in time-of-use electricity pricing programs," Resource and Energy Economics, Elsevier, vol. 47(C), pages 126-142.
    7. Nestor Gandelman & Ruben Hernandez-Murillo, 2015. "Risk Aversion at the Country Level," Review, Federal Reserve Bank of St. Louis, vol. 97(1), pages 53-66.
    8. Frederick V. Waugh, 1944. "Does the Consumer Benefit from Price Instability?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 58(4), pages 602-614.
    9. Ambec, Stefan & De Donder, Philippe, 2022. "Environmental policy with green consumerism," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    10. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    11. Thomas-Olivier Leautier, 2014. "Is Mandating “Smart Meters†Smart?," The Energy Journal, , vol. 35(4), pages 135-158, October.
    12. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    13. Roldán Fernández, Juan Manuel & Payán, Manuel Burgos & Santos, Jesús Manuel Riquelme & García, Ángel Luis Trigo, 2017. "The voluntary price for the small consumer: Real-time pricing in Spain," Energy Policy, Elsevier, vol. 102(C), pages 41-51.
    14. Andreoni, James, 1990. "Impure Altruism and Donations to Public Goods: A Theory of Warm-Glow Giving?," Economic Journal, Royal Economic Society, vol. 100(401), pages 464-477, June.
    15. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    16. Meredith Fowlie & Catherine Wolfram & C. Anna Spurlock & Annika Todd & Patrick Baylis & Peter Cappers, 2017. "Default Effects and Follow-On Behavior: Evidence from an Electricity Pricing Program," NBER Working Papers 23553, National Bureau of Economic Research, Inc.
    17. Claude Crampes & Thomas-Olivier Léautier, 2015. "Demand response in adjustment markets for electricity," Journal of Regulatory Economics, Springer, vol. 48(2), pages 169-193, October.
    18. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    19. Yang, Yuting, 2020. "Electricity Interconnection with Intermittent Renewables," TSE Working Papers 20-1075, Toulouse School of Economics (TSE).
    20. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    21. Schneider, Ian & Sunstein, Cass R., 2017. "Behavioral considerations for effective time-varying electricity prices," Behavioural Public Policy, Cambridge University Press, vol. 1(2), pages 219-251, November.
    22. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    23. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    24. Dato, Prudence & Durmaz, Tunç & Pommeret, Aude, 2020. "Smart grids and renewable electricity generation by households," Energy Economics, Elsevier, vol. 86(C).
    25. Turnovsky, Stephen J & Shalit, Haim & Schmitz, Andrew, 1980. "Consumer's Surplus, Price Instability, and Consumer Welfare," Econometrica, Econometric Society, vol. 48(1), pages 135-152, January.
    26. Sebastien Houde, Annika Todd, Anant Sudarshan, June A. Flora , and K. Carrie Armel, 2013. "Real-time Feedback and Electricity Consumption: A Field Experiment Assessing the Potential for Savings and Persistence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    27. Ma, Chunbo & Burton, Michael, 2016. "Warm glow from green power: Evidence from Australian electricity consumers," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 106-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ambec, Stefan & Yang, Yuting, 2024. "Climate policy with electricity trade," Resource and Energy Economics, Elsevier, vol. 76(C).
    2. Marchetti, Isabella & Rego, Erik Eduardo, 2022. "The impact of hourly pricing for renewable generation projects in Brazil," Renewable Energy, Elsevier, vol. 189(C), pages 601-617.
    3. Pretto, Madeline, 2021. "Tail-risk Comprehension and Protection in Real-time Electricity Pricing : Experimental Evidence," Warwick-Monash Economics Student Papers 25, Warwick Monash Economics Student Papers.
    4. Nandeeta Neerunjun, 2022. "Emissions pricing instruments with intermittent renewables: second-best policy," Working Papers hal-03740013, HAL.
    5. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    6. Alexander Haupt, 2023. "Environmental Policy and Renewable Energy in an Imperfectly Competitive Market," CESifo Working Paper Series 10524, CESifo.
    7. Nandeeta Neerunjun, 2022. "Emissions pricing instruments with intermittent renewables: second-best policy," AMSE Working Papers 2215, Aix-Marseille School of Economics, France.
    8. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    9. Pébereau, Charles & Remmy, Kevin, 2023. "Barriers to real-time electricity pricing: Evidence from New Zealand," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    10. Ferrasse, Jean-Henry & Neerunjun, Nandeeta & Stahn, Hubert, 2022. "Intermittency and electricity retailing: An incomplete market approach," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 24-36.
    11. Long, Yong & Liu, Xia, 2024. "Optimal green investment strategy for grid-connected microgrid considering the impact of renewable energy source endowment and incentive policy," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    3. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    4. Anette Boom & Sebastian Schwenen, 2021. "Is real-time pricing smart for consumers?," Journal of Regulatory Economics, Springer, vol. 60(2), pages 193-213, December.
    5. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    6. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    7. Werthschulte, Madeline & Löschel, Andreas, 2021. "On the role of present bias and biased price beliefs in household energy consumption," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    8. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2020. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Retail Pricing Under Carbon Taxation and Variable Renewable Electricity Supply," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 183-213, January.
    9. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    10. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    11. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    12. Tunç Durmaz & Aude Pommeret & Ian Ridley, 2017. "Willingness to Pay for Solar Panels and Smart Grids," Working Papers 2017.24, Fondazione Eni Enrico Mattei.
    13. Ferrasse, Jean-Henry & Neerunjun, Nandeeta & Stahn, Hubert, 2022. "Intermittency and electricity retailing: An incomplete market approach," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 24-36.
    14. Bryan K. Bollinger & Wesley R. Hartmann, 2020. "Information vs. Automation and Implications for Dynamic Pricing," Management Science, INFORMS, vol. 66(1), pages 290-314, January.
    15. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    16. Alexander Haupt, 2023. "Environmental Policy and Renewable Energy in an Imperfectly Competitive Market," CESifo Working Paper Series 10524, CESifo.
    17. Groh, Elke D. & Ziegler, Andreas, 2022. "On the relevance of values, norms, and economic preferences for electricity consumption," Ecological Economics, Elsevier, vol. 192(C).
    18. Aydin, Erdal & Brounen, Dirk & Kok, Nils, 2018. "Information provision and energy consumption: Evidence from a field experiment," Energy Economics, Elsevier, vol. 71(C), pages 403-410.
    19. Elke D. Groh & Andreas Ziegler, 2021. "On the relevance of values, norms, and economic preferences for electricity consumption," MAGKS Papers on Economics 202107, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    20. Fang, Debin & Wang, Pengyu, 2023. "Optimal real-time pricing and electricity package by retail electric providers based on social learning," Energy Economics, Elsevier, vol. 117(C).

    More about this item

    Keywords

    Electricity; Intermittency; Renewables; Dynamic pricing; Demand response; Smart meters;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:94:y:2021:i:c:s014098832030414x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.