IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v33y2011i6p1252-1266.html
   My bibliography  Save this article

An hour-ahead prediction model for heavy-tailed spot prices

Author

Listed:
  • Kim, Jae Ho
  • Powell, Warren B.

Abstract

We propose an hour-ahead prediction model for electricity prices that capture the heavy tailed behavior that we observe in the hourly spot market in the Ercot (Texas) and the PJM West hub grids. We present a model according to which we separate the price process into a thin-tailed trailing median process and a heavy-tailed residual process whose probability distribution can be approximated by a Cauchy distribution. We show empirical evidence that supports our model.

Suggested Citation

  • Kim, Jae Ho & Powell, Warren B., 2011. "An hour-ahead prediction model for heavy-tailed spot prices," Energy Economics, Elsevier, vol. 33(6), pages 1252-1266.
  • Handle: RePEc:eee:eneeco:v:33:y:2011:i:6:p:1252-1266
    DOI: 10.1016/j.eneco.2011.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988311001290
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Doyne Farmer & Fabrizio Lillo, 2003. "On the origin of power law tails in price fluctuations," Papers cond-mat/0309416, arXiv.org, revised Jan 2004.
    2. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    3. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    4. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    5. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    6. Taleb, Nassim Nicholas, 2007. "Black Swans and the Domains of Statistics," The American Statistician, American Statistical Association, vol. 61, pages 198-200, August.
    7. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    8. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    9. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    10. Ait-Sahalia, Yacine, 2004. "Disentangling diffusion from jumps," Journal of Financial Economics, Elsevier, vol. 74(3), pages 487-528, December.
    11. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    12. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coulon, Michael & Powell, Warren B. & Sircar, Ronnie, 2013. "A model for hedging load and price risk in the Texas electricity market," Energy Economics, Elsevier, vol. 40(C), pages 976-988.
    2. Luigi Cirocco & Martin Belusko & Frank Bruno & John Boland & Peter Pudney, 2014. "Optimisation of Storage for Concentrated Solar Power Plants," Challenges, MDPI, Open Access Journal, vol. 5(2), pages 1-31, December.

    More about this item

    Keywords

    Heavy-tail; Median-reversion; Mean-reversion; Electricity spot market;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:33:y:2011:i:6:p:1252-1266. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.