IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009i5p702-713.html
   My bibliography  Save this article

An equilibrium pricing model for weather derivatives in a multi-commodity setting

Author

Listed:
  • Lee, Yongheon
  • Oren, Shmuel S.

Abstract

Many industries are exposed to weather risk. Weather derivatives can play a key role in hedging and diversifying such risk because the uncertainty in a company's profit function can be correlated to weather condition which affects diverse industry sectors differently. Unfortunately the weather derivatives market is a classical example of an incomplete market that is not amenable to standard methodologies used for derivative pricing in complete markets. In this paper, we develop an equilibrium pricing model for weather derivatives in a multi-commodity setting. The model is constructed in the context of a stylized economy where agents optimize their hedging portfolios which include weather derivatives that are issued in a fixed quantity by a financial underwriter. The supply and demand resulting from hedging activities and the supply by the underwriter are combined in an equilibrium pricing model under the assumption that all agents maximize some risk averse utility function. We analyze the gains due to the inclusion of weather derivatives in hedging portfolios and examine the components of that gain attributable to hedging and to risk sharing.

Suggested Citation

  • Lee, Yongheon & Oren, Shmuel S., 2009. "An equilibrium pricing model for weather derivatives in a multi-commodity setting," Energy Economics, Elsevier, vol. 31(5), pages 702-713, September.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:702-713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00025-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, M. & Wei, J., 1999. "Pricing Weather Derivative : An Equilibrium Approach," Rotman School of Management - Finance 99-002, Rotman School of Management, University of Toronto.
    2. Eckhard Platen & Jason West, 2004. "A Fair Pricing Approach to Weather Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 23-53, March.
    3. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    4. Patrick L. Brockett & Mulong Wang & Chuanhou Yang & Hong Zou, 2006. "Portfolio Effects and Valuation of Weather Derivatives," The Financial Review, Eastern Finance Association, vol. 41(1), pages 55-76, February.
    5. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    6. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    7. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    8. Sébastien Chaumont & Peter Imkeller & Matthias Müller & Ulrich Horst, 2005. "A Simple Model for Trading Climate Risk," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 74(2), pages 175-195.
    9. Hélène Hamisultane, 2007. "Extracting Information from the Market to Price the Weather Derivatives," Working Papers halshs-00079192, HAL.
    10. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roncoroni, Andrea & Id Brik, Rachid, 2017. "Hedging size risk: Theory and application to the US gas market," Energy Economics, Elsevier, vol. 64(C), pages 415-437.
    2. Matsumoto, Takuji & Yamada, Yuji, 2021. "Simultaneous hedging strategy for price and volume risks in electricity businesses using energy and weather derivatives1," Energy Economics, Elsevier, vol. 95(C).
    3. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Traian A. Pirvu & Huayue Zhang, 2012. "A Multi Period Equilibrium Pricing Model," Papers 1205.6193, arXiv.org.
    5. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    6. Colin Lizieri & Gianluca Marcato & Paul Ogden & Andrew Baum, 2012. "Pricing Inefficiencies in Private Real Estate Markets Using Total Return Swaps," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 774-803, October.
    7. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    8. Takuji Matsumoto & Yuji Yamada, 2021. "Customized yet Standardized Temperature Derivatives: A Non-Parametric Approach with Suitable Basis Selection for Ensuring Robustness," Energies, MDPI, vol. 14(11), pages 1-24, June.
    9. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    10. Bhattacharya, Saptarshi & Gupta, Aparna & Kar, Koushik & Owusu, Abena, 2020. "Risk management of renewable power producers from co-dependencies in cash flows," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1081-1093.
    11. Chiou-Wei, Song-Zan & Chen, Sheng-Hung & Zhu, Zhen, 2020. "Natural gas price, market fundamentals and hedging effectiveness," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 321-337.
    12. Javier Orlando Pantoja Robayo & Andrea Roncoroni, 2012. "Optimal Static Hedging of Energy Price and Volume Risk: Closed-Form Results," Documentos de Trabajo de Valor Público 10668, Universidad EAFIT.
    13. Takino, Kazuhiro, 2016. "An equilibrium model for the OTC derivatives market with a collateral agreement," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 41-55.
    14. Kanamura, Takashi, 2019. "Volumetric Risk Hedging Strategies and Basis Risk Premium for Solar Power," MPRA Paper 92009, University Library of Munich, Germany.
    15. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.
    16. Yumi Oum & Shmuel S. Oren, 2010. "Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market," Decision Analysis, INFORMS, vol. 7(1), pages 107-122, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    2. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    3. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    4. Javier Orlando Pantoja Robayo & Andrea Roncoroni, 2012. "Optimal Static Hedging of Energy Price and Volume Risk: Closed-Form Results," Documentos de Trabajo de Valor Público 10668, Universidad EAFIT.
    5. repec:hum:wpaper:sfb649dp2009-001 is not listed on IDEAS
    6. repec:hum:wpaper:sfb649dp2009-046 is not listed on IDEAS
    7. Benth, Fred & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers 2009-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    9. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    10. Mark Manfredo & Timothy Richards, 2009. "Hedging with weather derivatives: a role for options in reducing basis risk," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 87-97.
    11. Angelos Prentzas & Thomas Bournaris & Stefanos Nastis & Christina Moulogianni & George Vlontzos, 2024. "Enhancing Sustainability through Weather Derivative Option Contracts: A Risk Management Tool in Greek Agriculture," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    12. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    13. Eirini Konstantinidi & Gkaren Papazian & George Skiadopoulos, 2015. "Modeling the Dynamics of Temperature with a View to Weather Derivatives," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 17, pages 511-544, World Scientific Publishing Co. Pte. Ltd..
    14. Wei Yuan & Ahmet Göncü & Giray Ökten, 2015. "Estimating sensitivities of temperature-based weather derivatives," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1942-1955, April.
    15. Matsumoto, Takuji & Yamada, Yuji, 2021. "Simultaneous hedging strategy for price and volume risks in electricity businesses using energy and weather derivatives1," Energy Economics, Elsevier, vol. 95(C).
    16. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    19. Raimova, Gulnora, 2011. "Variance reduction methods at the pricing of weather options," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 21(1), pages 3-15.
    20. Andrew Grant & Steve Satchell, 2019. "Endogenous divorce risk and investment," Journal of Population Economics, Springer;European Society for Population Economics, vol. 32(3), pages 845-876, July.
    21. Markus Stowasser, 2011. "Modelling rain risk: a multi-order Markov chain model approach," Journal of Risk Finance, Emerald Group Publishing, vol. 13(1), pages 45-60, December.
    22. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:702-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.