IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v139y2024ics0140988324005693.html
   My bibliography  Save this article

Assessing the value and risk of renewable PPAs

Author

Listed:
  • Pombo-Romero, Julio
  • Rúas-Barrosa, Oliver
  • Vázquez, Carlos

Abstract

Renewable Energy Power Purchase Agreements (RE PPAs) are considered to be a key tool in order to foster RE deployment, as they allow for the reduction of uncertainty for all parties as well as facilitating access to the long term finance required for such projects. Nevertheless, RE PPA adoption is hampered by a number of barriers, including the high level of guarantees demanded from offtakers, a problem which is related to the shortcomings of existing assessment methodologies, in particular, determining the credit risk of the PPA itself. In this work, we propose an RE PPA assessment model focused on the main drivers of value and risk for the offtaker which are cost and volatility reductions, compared to the electricity market. By identifying and valuing the options for the offtaker embedded in the PPA, it is possible to determine the default probability at any given time and the expected loss for the producer, thus allowing for the estimation of the amount of guarantees needed to hedge the credit risk.

Suggested Citation

  • Pombo-Romero, Julio & Rúas-Barrosa, Oliver & Vázquez, Carlos, 2024. "Assessing the value and risk of renewable PPAs," Energy Economics, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:eneeco:v:139:y:2024:i:c:s0140988324005693
    DOI: 10.1016/j.eneco.2024.107861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324005693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    2. Kim, Kyeongseok & Park, Hyoungbae & Kim, Hyoungkwan, 2017. "Real options analysis for renewable energy investment decisions in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 918-926.
    3. Carrêlo, Isaac Barata & Almeida, Rita Hogan & Narvarte, Luis & Martinez-Moreno, Francisco & Carrasco, Luis Miguel, 2020. "Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the Mediterranean region," Renewable Energy, Elsevier, vol. 145(C), pages 2671-2682.
    4. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    5. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    6. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    7. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    10. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    11. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    12. M. Dahlgren, 2005. "A Continuous Time Model to Price Commodity-Based Swing Options," Review of Derivatives Research, Springer, vol. 8(1), pages 27-47, June.
    13. Mendicino, Luca & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2019. "Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Bruck, Maira & Sandborn, Peter, 2021. "Pricing bundled renewable energy credits using a modified LCOE for power purchase agreements," Renewable Energy, Elsevier, vol. 170(C), pages 224-235.
    15. repec:dau:papers:123456789/1433 is not listed on IDEAS
    16. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    17. Weron, R. & Kozłowska, B. & Nowicka-Zagrajek, J., 2001. "Modeling electricity loads in California: a continuous-time approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 344-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Živkov, Dejan & Kuzman, Boris & Japundžić, Miloš, 2025. "Using metals to hedge carbon emission allowances – Tail-risk and Omega ratio analysis," Resources Policy, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    6. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    7. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    8. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
    9. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    10. Gaurav Kapoor & Nuttanan Wichitaksorn & Wenjun Zhang, 2023. "Analyzing and forecasting electricity price using regime‐switching models: The case of New Zealand market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2011-2026, December.
    11. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    12. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    13. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
    14. Mili, Sabrina & Côté, Elizabeth, 2025. "Green on demand? Offtaker preferences for corporate power purchase agreements," Energy Policy, Elsevier, vol. 196(C).
    15. Taheri, Seyed Danial Mohseni & Nadarajah, Selvaprabu & Trivella, Alessio, 2025. "Physical vs Virtual corporate power purchase agreements: Meeting renewable targets amid demand and price uncertainty," European Journal of Operational Research, Elsevier, vol. 320(1), pages 256-270.
    16. Szymon Słotwiński, 2022. "The Significance of the “Power Purchase Agreement” for the Development of Local Energy Markets in the Theoretical Perspective of Polish Legal Conditions," Energies, MDPI, vol. 15(18), pages 1-14, September.
    17. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    18. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    19. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    20. Carlo Lucheroni, 2012. "A hybrid SETARX model for spikes in tight electricity markets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(1), pages 13-49.

    More about this item

    Keywords

    Power purchase agreements (PPAs); Pricing; Credit risk; Renewable energy; Levelized cost of energy (LCOE);
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:139:y:2024:i:c:s0140988324005693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.