IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i3p1140-1157.html
   My bibliography  Save this article

A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources

Author

Listed:
  • Fontes, Dalila B.M.M.
  • Homayouni, S. Mahdi
  • Gonçalves, José F.

Abstract

This work addresses a variant of the job shop scheduling problem in which jobs need to be transported to the machines processing their operations by a limited number of vehicles. Given that vehicles must deliver the jobs to the machines for processing and that machines need to finish processing the jobs before they can be transported, machine scheduling and vehicle scheduling are intertwined. A coordinated approach that solves these interrelated problems simultaneously improves the overall performance of the manufacturing system. In the current competitive business environment, and integrated approach is imperative as it boosts cost savings and on-time deliveries. Hence, the job shop scheduling problem with transport resources (JSPT) requires scheduling production operations and transport tasks simultaneously. The JSPT is studied considering the minimization of two alternative performance metrics, namely: makespan and exit time. Optimal solutions are found by a mixed integer linear programming (MILP) model. However, since integrated production and transportation scheduling is very complex, the MILP model can only handle small-sized problem instances. To find good quality solutions in reasonable computation times, we propose a hybrid particle swarm optimization and simulated annealing algorithm (PSOSA). Furthermore, we derive a fast lower bounding procedure that can be used to evaluate the performance of the heuristic solutions for larger instances. Extensive computational experiments are conducted on 73 benchmark instances, for each of the two performance metrics, to assess the efficacy and efficiency of the proposed PSOSA algorithm. These experiments show that the PSOSA outperforms state-of-the-art solution approaches and is very robust.

Suggested Citation

  • Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1140-1157
    DOI: 10.1016/j.ejor.2022.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722007184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Heshan & Wang, Yu & Li, Shuo & Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2022. "Recent advances in lutein production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Ümit Bilge & Gündüz Ulusoy, 1995. "A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS," Operations Research, INFORMS, vol. 43(6), pages 1058-1070, December.
    3. Li, Huiyu, 2022. "Leverage and productivity," Journal of Development Economics, Elsevier, vol. 154(C).
    4. Maarten C. W. Janssen & Santanu Roy, 2022. "Regulating Product Communication," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 245-283, February.
    5. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    6. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.
    7. Zhang, Lingye & Lu, Jing & Yang, Zaili, 2021. "Optimal scheduling of emergency resources for major maritime oil spills considering time-varying demand and transportation networks," European Journal of Operational Research, Elsevier, vol. 293(2), pages 529-546.
    8. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    9. Fuchs, Christoph & Kaiser, Ulrike & Schreier, Martin & van Osselaer, Stijn M.J., 2022. "The value of making producers personal," Journal of Retailing, Elsevier, vol. 98(3), pages 486-495.
    10. Lacomme, Philippe & Larabi, Mohand & Tchernev, Nikolay, 2013. "Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Economics, Elsevier, vol. 143(1), pages 24-34.
    11. William M. Spears & Derek T. Green & Diana F. Spears, 2010. "Biases in Particle Swarm Optimization," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 1(2), pages 34-57, April.
    12. Hommes, Cars & Li, Kai & Wagener, Florian, 2022. "Production delays and price dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 341-362.
    13. Khayat, Ghada El & Langevin, Andre & Riopel, Diane, 2006. "Integrated production and material handling scheduling using mathematical programming and constraint programming," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1818-1832, December.
    14. Li, Jay Y. & Tang, Dragon Yongjun, 2022. "Product market competition with CDS," Journal of Corporate Finance, Elsevier, vol. 73(C).
    15. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    16. Olatunde T. Baruwa & Miquel A. Piera, 2016. "A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4773-4792, August.
    17. Junchang Hu & Xiaocui Li & Nengmin Wang & Bin Jiang, 2022. "Green Product Design," Springer Books, in: Enterprises’ Green Growth Model and Value Chain Reconstruction, chapter 0, pages 155-183, Springer.
    18. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    19. Andy Ham, 2020. "Transfer-robot task scheduling in flexible job shop," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1783-1793, October.
    20. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.
    21. Xianhua Li & Donglin Lei & Yaxin Gao, 2022. "The order of the product of two elements," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 372-374, June.
    22. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    23. Brian Cevallos Fujiy & Gaurav Khanna & Hiroshi Toma, 2022. "Cultural Proximity and Production Networks," Working Papers 686, Research Seminar in International Economics, University of Michigan.
    24. Jietao Dong & Linxuan Zhang & Tianyuan Xiao, 2018. "A hybrid PSO/SA algorithm for bi-criteria stochastic line balancing with flexible task times and zoning constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 737-751, April.
    25. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    26. Bom, Pedro R.D. & Erauskin, Iñaki, 2022. "Productive government investment and the labor share," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 347-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Morais-da-Silva, Rodrigo & Glufke Reis, Germano & Sanctorum, Hermes & Forte Maiolino Molento, Carla, 2022. "The social impacts of a transition from conventional to cultivated and plant-based meats: Evidence from Brazil," Food Policy, Elsevier, vol. 111(C).
    2. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    3. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    4. Olatunde T. Baruwa & Miquel A. Piera, 2016. "A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4773-4792, August.
    5. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    6. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    7. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Salewski, Frank & Bartsch, Thomas, 1994. "A comparison of genetic and greedy randomized algorithms for medium-to-short-term audit-staff scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 356, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Andy Ham, 2020. "Transfer-robot task scheduling in flexible job shop," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1783-1793, October.
    10. Dalila B. M. M. Fontes & S. Mahdi Homayouni & Mauricio G. C. Resende, 2022. "Job-shop scheduling-joint consideration of production, transport, and storage/retrieval systems," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1284-1322, September.
    11. Reinhard Bürgy & Heinz Gröflin, 2016. "The blocking job shop with rail-bound transportation," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 152-181, January.
    12. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Dalila B. M. M. Fontes & S. Mahdi Homayouni, 2023. "A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 241-268, March.
    14. Moussa Abderrahim & Abdelghani Bekrar & Damien Trentesaux & Nassima Aissani & Karim Bouamrane, 2020. "Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints," Energies, MDPI, vol. 13(18), pages 1-19, September.
    15. Libin Han & Keyi Xing & Xiao Chen & Fuli Xiong, 2018. "A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1083-1096, June.
    16. Andreas Schirmer, 2000. "Case‐based reasoning and improved adaptive search for project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 201-222, April.
    17. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    18. Bryan A. Norman & James C. Bean, 1999. "A genetic algorithm methodology for complex scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(2), pages 199-211, March.
    19. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    20. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1140-1157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.