IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i3p978-990.html
   My bibliography  Save this article

Modeling and solution of the joint quay crane and truck scheduling problem

Author

Listed:
  • Tang, Lixin
  • Zhao, Jiao
  • Liu, Jiyin

Abstract

This paper addresses the joint quay crane and truck scheduling problem at a container terminal, considering the coordination of the two types of equipment to reduce their idle time between performing two successive tasks. For the unidirectional flow problem with only inbound containers, in which trucks go back to quayside without carrying outbound containers, a mixed-integer linear programming model is formulated to minimize the makespan. Several valid inequalities and a property of the optimal solutions for the problem are derived, and two lower bounds are obtained. An improved Particle Swarm Optimization (PSO) algorithm is then developed to solve this problem, in which a new velocity updating strategy is incorporated to improve the solution quality. For small sized problems, we have compared the solutions of the proposed PSO with the optimal solutions obtained by solving the model using the CPLEX software. The solutions of the proposed PSO for large sized problems are compared to the two lower bounds because CPLEX could not solve the problem optimally in reasonable time. For the more general situation considering both inbound and outbound containers, trucks may go back to quayside with outbound containers. The model is extended to handle this problem with bidirectional flow. Experiment shows that the improved PSO proposed in this paper is efficient to solve the joint quay crane and truck scheduling problem.

Suggested Citation

  • Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:3:p:978-990
    DOI: 10.1016/j.ejor.2013.08.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.08.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I F A Vis & R de Koster & K J Roodbergen & L W P Peeters, 2001. "Determination of the number of automated guided vehicles required at a semi-automated container terminal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 409-417, April.
    2. Zhang, Chuqian & Wan, Yat-wah & Liu, Jiyin & Linn, Richard J., 2002. "Dynamic crane deployment in container storage yards," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 537-555, July.
    3. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    4. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    5. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    6. Imai, Akio & Chen, Hsieh Chia & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "The simultaneous berth and quay crane allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 900-920, September.
    7. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2005. "Yard trailer routing at a maritime container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(1), pages 53-76, January.
    8. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    9. Bish, Ebru K., 2003. "A multiple-crane-constrained scheduling problem in a container terminal," European Journal of Operational Research, Elsevier, vol. 144(1), pages 83-107, January.
    10. Young Kim, Ki & Hwan Kim, Kap, 1999. "A routing algorithm for a single straddle carrier to load export containers onto a containership," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 425-433, March.
    11. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    12. Lee, Der-Horng & Wang, Hui Qiu & Miao, Lixin, 2008. "Quay crane scheduling with non-interference constraints in port container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 124-135, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patterson, S.R. & Kozan, E. & Hyland, P., 2017. "Energy efficient scheduling of open-pit coal mine trucks," European Journal of Operational Research, Elsevier, vol. 262(2), pages 759-770.
    2. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    3. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    4. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    5. Zhen, Lu & Zhuge, Dan & Zhu, Sheng-Lei, 2017. "Production stage allocation problem in large corporations," Omega, Elsevier, vol. 73(C), pages 60-78.
    6. Lu Zhen & Shuaian Wang & Kai Wang, 2016. "Terminal allocation problem in a transshipment hub considering bunker consumption," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 529-548, October.
    7. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    8. Noura Al-Dhaheri & Ali Diabat, 2017. "A Lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints," Annals of Operations Research, Springer, vol. 248(1), pages 1-24, January.
    9. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    10. Bai, Ruibin & Xue, Ning & Chen, Jianjun & Roberts, Gethin Wyn, 2015. "A set-covering model for a bidirectional multi-shift full truckload vehicle routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 134-148.
    11. Jin, Xiu & Chen, Na & Yuan, Ying, 2019. "Multi-period and tri-objective uncertain portfolio selection model: A behavioral approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 492-504.
    12. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Yun Peng & Wenyuan Wang & Ke Liu & Xiangda Li & Qi Tian, 2018. "The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    14. Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
    15. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    16. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    17. Abou Kasm, Omar & Diabat, Ali & Chow, Joseph Y.J., 2023. "Simultaneous operation of next-generation and traditional quay cranes at container terminals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1110-1125.
    18. Zhen, Lu & Xu, Zhou & Wang, Kai & Ding, Yi, 2016. "Multi-period yard template planning in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 700-719.
    19. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    20. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    21. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    22. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    23. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    24. Dalila B. M. M. Fontes & S. Mahdi Homayouni, 2023. "A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 241-268, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    2. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    3. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    4. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    5. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    6. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    7. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    8. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    9. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
    10. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    11. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    12. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    13. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    14. Canrong Zhang & Tao Wu & Mingyao Qi & Lixin Miao, 2018. "Simultaneous Allocation of Berths and Quay Cranes under Discrete Berth Situation," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-28, June.
    15. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    16. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    17. Roy, D. & de Koster, M.B.M., 2015. "Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2015-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    20. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:3:p:978-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.