IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i3d10.1007_s12351-019-00539-4.html
   My bibliography  Save this article

An integrated multi-ship crane allocation in Beirut Port container terminal

Author

Listed:
  • Nabil Nehme

    (Lebanese American University)

  • Bacel Maddah

    (American University of Beirut)

  • Isam A. Kaysi

    (American University of Beirut)

Abstract

This paper investigates the integration between the quay and yard sides for multiple berthing ships with transshipment containers. This paper is motivated by the experience of an operator at Beirut Port. An integer linear programming model is formulated to minimize the total number of cranes used in both quay and yard sides for all berthing ships with transshipment containers unloading during a finite and discretized time horizon. The number of containers to be unloaded is determined in each time period, by each quay crane, at each ship bay location, along with the designated storage location at the yard side. The number of yard cranes needed at each storage yard block is also determined over the time horizon. Major capacity, time, and spatial constraints related to transshipment operations are taken into consideration. One insight from our numerical results is that restricting resources at the yard side will lead to an increase in required cranes at the quay side, and vice versa, which confirm results in earlier literature on single ship. However, we argue, via several counter examples, that single-ship solutions are not easily adaptable to multi-ship situations, which justifies the purpose of integrated formulations such as ours.

Suggested Citation

  • Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:3:d:10.1007_s12351-019-00539-4
    DOI: 10.1007/s12351-019-00539-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00539-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00539-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ChengJi Liang & MiaoMiao Li & Bo Lu & Tianyi Gu & Jungbok Jo & Yi Ding, 2017. "Dynamic configuration of QC allocating problem based on multi-objective genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 847-855, March.
    2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    3. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    4. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    5. Isam Kaysi & Nabil Nehme, 2016. "Optimal investment strategy in a container terminal: A game theoretic approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(3), pages 250-263, September.
    6. Michel L. Balinski, 1961. "Fixed‐cost transportation problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 8(1), pages 41-54, March.
    7. Lee, Der-Horng & Cao, Jin Xin & Shi, Qixin & Chen, Jiang Hang, 2009. "A heuristic algorithm for yard truck scheduling and storage allocation problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 810-820, September.
    8. Peterkofsky, Roy I. & Daganzo, Carlos F., 1990. "A branch and bound solution method for the crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 159-172, June.
    9. Cao, Jin Xin & Lee, Der-Horng & Chen, Jiang Hang & Shi, Qixin, 2010. "The integrated yard truck and yard crane scheduling problem: Benders' decomposition-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 344-353, May.
    10. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    11. Ebru K. Bish & Thin‐Yin Leong & Chung‐Lun Li & Jonathan W. C. Ng & David Simchi‐Levi, 2001. "Analysis of a new vehicle scheduling and location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 363-385, August.
    12. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    13. Qingcheng Zeng & Ali Diabat & Qian Zhang, 2015. "A simulation optimization approach for solving the dual-cycling problem in container terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(8), pages 806-826, November.
    14. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    15. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    16. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    17. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    18. Katta G. Murty & Yat-wah Wan & Jiyin Liu & Mitchell M. Tseng & Edmond Leung & Kam-Keung Lai & Herman W. C. Chiu, 2005. "Hongkong International Terminals Gains Elastic Capacity Using a Data-Intensive Decision-Support System," Interfaces, INFORMS, vol. 35(1), pages 61-75, February.
    19. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    20. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    21. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    22. Van de Voorde, Eddy E.M., 2005. "What Future the Maritime Sector: Some Considerations on Globalisation, Co-Operation and Market Power," Research in Transportation Economics, Elsevier, vol. 13(1), pages 253-277, January.
    23. Lau, Henry Y.K. & Zhao, Ying, 2008. "Integrated scheduling of handling equipment at automated container terminals," International Journal of Production Economics, Elsevier, vol. 112(2), pages 665-682, April.
    24. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
    25. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    26. Frank Meisel, 2011. "The quay crane scheduling problem with time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 619-636, October.
    27. Bish, Ebru K., 2003. "A multiple-crane-constrained scheduling problem in a container terminal," European Journal of Operational Research, Elsevier, vol. 144(1), pages 83-107, January.
    28. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    29. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    30. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    31. Lee, Der-Horng & Wang, Hui Qiu & Miao, Lixin, 2008. "Quay crane scheduling with non-interference constraints in port container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 124-135, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    3. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    4. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    5. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    6. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    8. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    9. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    10. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    11. Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
    12. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    13. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
    14. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    15. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    16. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    17. Shoufeng Ma & Hongming Li & Ning Zhu & Chenyi Fu, 2021. "Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty," Journal of Scheduling, Springer, vol. 24(2), pages 137-174, April.
    18. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    19. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    20. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:3:d:10.1007_s12351-019-00539-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.