IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i3p945-962.html
   My bibliography  Save this article

Constraint programming models for integrated container terminal operations

Author

Listed:
  • Kizilay, Damla
  • Hentenryck, Pascal Van
  • Eliiyi, Deniz T.

Abstract

Although operations in container terminals are highly interdependent, they are traditionally optimized by decomposing the overall problem into a sequence of smaller sub-problems, each focusing on a single operation. Recent studies, however, have demonstrated the need and potential of optimizing these interdependent operations jointly. This paper proposes the Integrated Port Container Terminal Problem (IPCTP) that considers the joint optimization of quay crane assignment and scheduling, yard crane assignment and scheduling, yard location assignments, and yard truck assignment and scheduling. The IPCTP aims at minimizing the turnover times of the vessels and maximize terminal throughput. It also considers inbound and outbound containers simultaneously and models the safety distance and the interference constraints for the quay cranes. To solve the IPCTP, the paper proposes several constraint programming (CP) models. Computational results show that CP provides exact solutions in acceptable time to IPCTP instances derived from an actual (small) container terminal in Turkey. For hard IPCTP instances, the CP model can be generalized in a two-stage optimization approach to produce high-quality solutions in reasonable times.

Suggested Citation

  • Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:3:p:945-962
    DOI: 10.1016/j.ejor.2020.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720303593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    2. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    3. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    4. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    5. Lau, Henry Y.K. & Zhao, Ying, 2008. "Integrated scheduling of handling equipment at automated container terminals," International Journal of Production Economics, Elsevier, vol. 112(2), pages 665-682, April.
    6. Luigi Moccia & Jean‐François Cordeau & Manlio Gaudioso & Gilbert Laporte, 2006. "A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 45-59, February.
    7. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    8. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    9. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    10. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    11. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    2. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    3. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    5. Chen, Sumin & Zeng, Qingcheng & Li, Yantong, 2023. "Integrated operations planning in highly electrified container terminals considering time-of-use tariffs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    6. Zhang, Xiaoju & Jia, Nan & Song, Dongping & Liu, Baoli, 2024. "Modelling and analyzing the stacking strategies in automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    7. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    8. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    9. Hideyo Inutsuka & Kinya Ichimura & Yoshihisa Sugimura & Muneo Yoshie & Takeshi Shinoda, 2024. "Study on the Relationship between Port Governance and Terminal Operation System for Smart Port: Japan Case," Logistics, MDPI, vol. 8(2), pages 1-18, June.
    10. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    11. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    3. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    4. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
    5. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    6. Yan Zheng & Meixian Xu & Zhaohu Wang & Yujie Xiao, 2023. "A Genetic Algorithm for Integrated Scheduling of Container Handing Systems at Container Terminals from a Low-Carbon Operations Perspective," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    7. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
    8. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    9. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    10. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    11. Chargui, Kaoutar & Zouadi, Tarik & El Fallahi, Abdellah & Reghioui, Mohamed & Aouam, Tarik, 2021. "Berth and quay crane allocation and scheduling with worker performance variability and yard truck deployment in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    13. Xi Guo & Shell Ying Huang, 2012. "Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals," Transportation Science, INFORMS, vol. 46(1), pages 134-148, February.
    14. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
    15. Yun Peng & Wenyuan Wang & Ke Liu & Xiangda Li & Qi Tian, 2018. "The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    16. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    17. Defeng Sun & Lixin Tang & Roberto Baldacci & Zihan Chen, 2024. "A Decomposition Method for the Group-Based Quay Crane Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 543-570, March.
    18. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    19. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    20. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:3:p:945-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.