IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i2d10.1007_s10878-022-00885-8.html
   My bibliography  Save this article

Job-shop scheduling-joint consideration of production, transport, and storage/retrieval systems

Author

Listed:
  • Dalila B. M. M. Fontes

    (INESC TEC
    Universidade do Porto)

  • S. Mahdi Homayouni

    (INESC TEC)

  • Mauricio G. C. Resende

    (University of Washington
    Amazon Research)

Abstract

This paper proposes a new problem by integrating the job shop scheduling, the part feeding, and the automated storage and retrieval problems. These three problems are intertwined and the performance of each of these problems influences and is influenced by the performance of the other problems. We consider a manufacturing environment composed of a set of machines (production system) connected by a transport system and a storage/retrieval system. Jobs are retrieved from storage and delivered to a load/unload area (LU) by the automated storage retrieval system. Then they are transported to and between the machines where their operations are processed on by the transport system. Once all operations of a job are processed, the job is taken back to the LU and then returned to the storage cell. We propose a mixed-integer linear programming (MILP) model that can be solved to optimality for small-sized instances. We also propose a hybrid simulated annealing (HSA) algorithm to find good quality solutions for larger instances. The HSA incorporates a late acceptance hill-climbing algorithm and a multistart strategy to promote both intensification and exploration while decreasing computational requirements. To compute the optimality gap of the HSA solutions, we derive a very fast lower bounding procedure. Computational experiments are conducted on two sets of instances that we also propose. The computational results show the effectiveness of the MILP on small-sized instances as well as the effectiveness, efficiency, and robustness of the HSA on medium and large-sized instances. Furthermore, the computational experiments clearly shown that importance of optimizing the three problems simultaneous. Finally, the importance and relevance of including the storage/retrieval activities are empirically demonstrated as ignoring them leads to wrong and misleading results.

Suggested Citation

  • Dalila B. M. M. Fontes & S. Mahdi Homayouni & Mauricio G. C. Resende, 2022. "Job-shop scheduling-joint consideration of production, transport, and storage/retrieval systems," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1284-1322, September.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00885-8
    DOI: 10.1007/s10878-022-00885-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00885-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00885-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Gao & Jinjiang Yuan, 2019. "Unbounded parallel-batch scheduling under agreeable release and processing to minimize total weighted number of tardy jobs," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 698-711, October.
    2. Andy Ham, 2021. "Transfer-robot task scheduling in job shop," International Journal of Production Research, Taylor & Francis Journals, vol. 59(3), pages 813-823, February.
    3. Norelhouda Sekkal & Fayçal Belkaid, 2020. "A multi-objective simulated annealing to solve an identical parallel machine scheduling problem with deterioration effect and resources consumption constraints," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 660-696, October.
    4. Zhi Li & Ali Vatankhah Barenji & Jiazhi Jiang & Ray Y. Zhong & Gangyan Xu, 2020. "A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 469-480, February.
    5. Marcus Randall & Graham McMahon & Stephen Sugden, 2002. "A Simulated Annealing Approach to Communication Network Design," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 55-65, March.
    6. Yiwei Jiang & Qinghui Zhang & Jueliang Hu & Jianming Dong & Min Ji, 2015. "Single-server parallel-machine scheduling with loading and unloading times," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 201-213, August.
    7. Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2021. "Production and transport scheduling in flexible job shop manufacturing systems," Journal of Global Optimization, Springer, vol. 79(2), pages 463-502, February.
    8. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.
    9. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    10. Ümit Bilge & Gündüz Ulusoy, 1995. "A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS," Operations Research, INFORMS, vol. 43(6), pages 1058-1070, December.
    11. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    12. Jinwei Gu & Manzhan Gu & Xiwen Lu & Ying Zhang, 2018. "Asymptotically optimal policy for stochastic job shop scheduling problem to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 142-161, July.
    13. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    14. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    15. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2021. "Production and transport scheduling in flexible job shop manufacturing systems," Journal of Global Optimization, Springer, vol. 79(2), pages 463-502, February.
    2. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    3. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    4. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    5. Andy Ham, 2020. "Transfer-robot task scheduling in flexible job shop," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1783-1793, October.
    6. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.
    7. Polten, Lukas & Emde, Simon, 2021. "Scheduling automated guided vehicles in very narrow aisle warehouses," Omega, Elsevier, vol. 99(C).
    8. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.
    9. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    10. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    11. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    13. Gharehgozli, Amir & Xu, Chao & Zhang, Wenda, 2021. "High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system," European Journal of Operational Research, Elsevier, vol. 289(2), pages 495-507.
    14. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    15. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    16. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    17. Jingbo Huang & Jiting Li & Yonghao Du & Yanjie Song & Jian Wu & Feng Yao & Pei Wang, 2023. "Research of a Multi-Level Organization Human Resource Network Optimization Model and an Improved Late Acceptance Hill Climbing Algorithm," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    18. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    19. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
    20. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00885-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.