IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i2d10.1007_s10951-023-00802-9.html
   My bibliography  Save this article

A novel and efficient real-time sequencing strategy for appointment scheduling with unpunctual patients

Author

Listed:
  • Chao Li

    (Hunan University)

  • Zhi Yang

    (Hunan University)

  • Fajun Yang

    (Shanghai University
    Hagen University)

  • Feng Wang

    (Hunan University)

Abstract

No-shows and non-punctual appointments have always been uncertain factors faced by managers of service-oriented enterprises and institutions, which usually lead to a low utilization rate of resources and a rapid decline in service satisfaction. Taking clinics as an example, this paper proposes a novel and efficient real-time sequencing strategy to minimize the cost associated with patient waiting time, provider idle time and overtime considering no-shows and unpunctuality. Four types of patient waiting time are considered for the first time, based on which the developed real-time sequencing strategy is used for scheduling the waiting patients when the provider becomes idle. Then, a biased random-key genetic algorithm is adopted to determine the number of patients on appointment slots and the length of each appointment slot. Extensive computational experiments show that the derived real-time sequencing strategy achieves a significant cost reduction compared with the famous FCFS (first come first served) and the state-of-art LAR (the larger of appointment time and real arrival time) rules.

Suggested Citation

  • Chao Li & Zhi Yang & Fajun Yang & Feng Wang, 2024. "A novel and efficient real-time sequencing strategy for appointment scheduling with unpunctual patients," Journal of Scheduling, Springer, vol. 27(2), pages 135-149, April.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:2:d:10.1007_s10951-023-00802-9
    DOI: 10.1007/s10951-023-00802-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-023-00802-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-023-00802-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    2. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    3. Xingwei Pan & Na Geng & Xiaolan Xie, 2021. "A stochastic approximation approach for managing appointments in the presence of unpunctual patients, multiple servers and no-shows," International Journal of Production Research, Taylor & Francis Journals, vol. 59(10), pages 2996-3016, May.
    4. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    5. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    6. Dantas, Leila F. & Fleck, Julia L. & Cyrino Oliveira, Fernando L. & Hamacher, Silvio, 2018. "No-shows in appointment scheduling – a systematic literature review," Health Policy, Elsevier, vol. 122(4), pages 412-421.
    7. Jiayi Liu & Jingui Xie & Kum Khiong Yang & Zhichao Zheng, 2019. "Effects of Rescheduling on Patient No-Show Behavior in Outpatient Clinics," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 780-797, October.
    8. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    9. Jens Rocholl & Lars Mönch, 2021. "Decomposition heuristics for parallel-machine multiple orders per job scheduling problems with a common due date," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(8), pages 1737-1753, August.
    10. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    11. Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
    12. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    13. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    14. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    2. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    3. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    4. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    5. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    6. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    7. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    8. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    9. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    10. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    11. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    12. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    13. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    14. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    15. Mahes, Roshan & Mandjes, Michel & Boon, Marko & Taylor, Peter, 2024. "Adaptive scheduling in service systems: A Dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 605-626.
    16. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    17. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    18. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    19. Morikawa, Katsumi & Takahashi, Katsuhiko, 2017. "Scheduling appointments for walk-ins," International Journal of Production Economics, Elsevier, vol. 190(C), pages 60-66.
    20. Pardis Seyedi & Michael W. Carter & Kourosh Eshghi, 2025. "Central intake optimization and decentralized decomposition for appointment scheduling and sequencing," Flexible Services and Manufacturing Journal, Springer, vol. 37(1), pages 208-253, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:2:d:10.1007_s10951-023-00802-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.