IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v82y2019icp70-82.html
   My bibliography  Save this article

A stochastic programming model for outpatient appointment scheduling considering unpunctuality

Author

Listed:
  • Jiang, Bowen
  • Tang, Jiafu
  • Yan, Chongjun

Abstract

Many papers on outpatient appointment scheduling assume that patients arrive on time. However, unpunctuality is a stochastic factor that is inevitable in practice, which leads to patients arriving out of order. A schedule may not be reasonable if a clinic neglects the influence of patient unpunctuality. This paper addresses the outpatient scheduling problem considering unpunctuality (OS-U) by developing a stochastic programming model. We compare the performance of the OS-U system with the strict-punctuality (OS-P) system. We illustrate that the model has an exact and unified formula for cases of patients arriving in the appointment order and arriving out of order. The OS-U problem is solved by using Benders decomposition combined with the sample average approximation (BD-SAA) technique to determine the global optimal set of appointment intervals with the goal of minimizing the weighted sum of all patient waiting times, doctor idle times, and overtime. Numerical experiments indicate that the appointment rule changes when considering unpunctuality, although the set of optimal appointment intervals still takes the shape of dome (interval width increases at first, then remains nearly constant and eventually decreases for the last patients). The OS-P system schedules the first two patients together at the start of a session, whereas the OS-U system schedules them with different appointment times and requires a longer slot between the first two patients if patients tend to arrive early rather than late. The variance of unpunctuality has little impact. The no-show probability has a greater influence on system performances in an OS-U system than those in an OS-P system.

Suggested Citation

  • Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
  • Handle: RePEc:eee:jomega:v:82:y:2019:i:c:p:70-82
    DOI: 10.1016/j.omega.2017.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317301895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2017.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexopoulos, Christos & Goldsman, David & Fontanesi, John & Kopald, David & Wilson, James R., 2008. "Modeling patient arrivals in community clinics," Omega, Elsevier, vol. 36(1), pages 33-43, February.
    2. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    3. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    4. Michele Samorani & Subhamoy Ganguly, 2016. "Optimal Sequencing of Unpunctual Patients in High-Service-Level Clinics," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 330-346, February.
    5. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    6. Nan Liu, 2016. "Optimal Choice for Appointment Scheduling Window under Patient No-Show Behavior," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 128-142, January.
    7. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    8. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    9. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    10. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    11. Jin Qi, 2017. "Mitigating Delays and Unfairness in Appointment Systems," Management Science, INFORMS, vol. 63(2), pages 566-583, February.
    12. Kuiper, Alex & Mandjes, Michel, 2015. "Appointment scheduling in tandem-type service systems," Omega, Elsevier, vol. 57(PB), pages 145-156.
    13. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    14. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    15. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    16. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    17. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    18. Steiner, Maria Teresinha Arns & Datta, Dilip & Steiner Neto, Pedro José & Scarpin, Cassius Tadeu & Rui Figueira, José, 2015. "Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil," Omega, Elsevier, vol. 52(C), pages 53-64.
    19. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    20. Achal Bassamboo & Ramandeep Singh Randhawa, 2016. "Scheduling Homogeneous Impatient Customers," Management Science, INFORMS, vol. 62(7), pages 2129-2147, July.
    21. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    22. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    2. Huang, Chao & Ding, Yi & Hu, Weihao & Jiang, Yi & Li, Yongzhen, 2021. "Cost-Based attraction recommendation for tour operators under stochastic demand," Omega, Elsevier, vol. 102(C).
    3. Jiang, Bowen & Fan, Zhi-Ping, 2020. "Optimal allocation of shared parking slots considering parking unpunctuality under a platform-based management approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    5. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    6. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    7. Meersman, Tine & Maenhout, Broos & Van Herck, Koen, 2023. "A nested Benders decomposition-based algorithm to solve the three-stage stochastic optimisation problem modeling population-based breast cancer screening," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1273-1293.
    8. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    9. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    3. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    4. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    5. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    6. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    7. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    8. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    9. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    10. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    11. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    12. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    13. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    14. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    15. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    16. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    17. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    18. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    19. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    20. Mahes, Roshan & Mandjes, Michel & Boon, Marko & Taylor, Peter, 2024. "Adaptive scheduling in service systems: A Dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 605-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:82:y:2019:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.