Author
Listed:
- Meersman, Tine
- Maenhout, Broos
- Fiems, Dieter
Abstract
This study examines patient-initiated appointment rescheduling with consideration of patient preferences. Online rescheduling policies are investigated for the selection and sequential offering of new appointments upon the arrival of a rescheduling request via a telephone call. Appointments are offered until the patient accepts one or the maximum number of offers is reached. The aim is to reschedule appointments using a weighted function to maximise the patients’ satisfaction, optimise the operational performance, and minimise the number of patients deferred to a future time horizon. Different patient types are taken into account characterised by their uncertainties in rescheduling, cancellation, no-show, and service duration. The rescheduling process is formulated as a stochastic dynamic scheduling problem and approximated using a Markov Decision Process (MDP). Two heuristic policies are proposed, referred to as the myopic stochastic and the MDP-based algorithms. Both policies apply a simulation-optimisation approach that considers patient preferences and expected operational performance. To determine the set of offered appointments, the MDP-based algorithm additionally accounts for expected future rescheduling requests. Computational experiments are performed on real-life instances. The results demonstrate that the two proposed policies yield solutions of high quality. The myopic stochastic policy outperforms the MDP-based policy when it is challenging to offer suitable slots due to high capacity utilisation or a lack of clear patient preferences. Conversely, the MDP-based algorithm delivers better results when capacity utilisation is lower and there is some variation in preferences across days and patients.
Suggested Citation
Meersman, Tine & Maenhout, Broos & Fiems, Dieter, 2025.
"Dynamic appointment rescheduling with patient preferences,"
European Journal of Operational Research, Elsevier, vol. 326(3), pages 498-514.
Handle:
RePEc:eee:ejores:v:326:y:2025:i:3:p:498-514
DOI: 10.1016/j.ejor.2025.05.005
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:326:y:2025:i:3:p:498-514. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.