IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p1018-1031.html
   My bibliography  Save this article

Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach

Author

Listed:
  • Namakshenas, Mohammad
  • Mazdeh, Mohammad Mahdavi
  • Braaksma, Aleida
  • Heydari, Mehdi

Abstract

This paper studies optimal criteria for the appointment scheduling of outpatients in a medical imaging center. The main goal of this study is to coordinate the assignments of radiopharmaceuticals and the scheduling of outpatients on imaging scanners. We study a case of a molecular imaging center that offers services for various diagnostic procedures for outpatient requests. Most procedures in molecular imaging involve several steps limited by strict time windows and require a time-sensitive chemical element, technetium-99m (99mTc) with a limited half-life, to produce the radiopharmaceuticals. We investigate the mathematical dynamics of 99mTc dosages to construct optimal schedules for preparing the radiopharmaceuticals. We develop a rigorous mixed-integer programming model to coordinate the assignment of the radiopharmaceuticals and the scheduling of outpatients on the scanners. The objective is to minimize the total deviation from the scheduled scanning times. We also develop a novel, less conservative robust optimization approach to capture the uncertainty raised by the availability of 99mTc. We propose an uncertainty handling mechanism to reduce the uncertainty interval over time recursively. The proposed mechanism avoids over-conservatism and increases the reliability of mathematical robust models. We evaluate the proposed models by multiple criteria. The final results suggest that the robust model is able to schedule up to 40 outpatients with at most 20 percent of deviation from the scheduled scan times with a decent degree of the constraint violation versus 30 outpatients with at most 50 percent according to the current practice.

Suggested Citation

  • Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1018-1031
    DOI: 10.1016/j.ejor.2022.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Gartner, 2014. "Scheduling the Hospital-Wide Flow of Elective Patients," Lecture Notes in Economics and Mathematical Systems, in: Optimizing Hospital-wide Patient Scheduling, edition 127, chapter 0, pages 33-54, Springer.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Bohui Liang & Ayten Turkcan & Mehmet Erkan Ceyhan & Keith Stuart, 2015. "Improvement of chemotherapy patient flow and scheduling in an outpatient oncology clinic," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7177-7190, December.
    4. Andreas Fügener & Jens O. Brunner, 2019. "Planning for Overtime: The Value of Shift Extensions in Physician Scheduling," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 732-744, October.
    5. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    6. Nan Liu, 2016. "Optimal Choice for Appointment Scheduling Window under Patient No-Show Behavior," Production and Operations Management, Production and Operations Management Society, vol. 25(1), pages 128-142, January.
    7. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    8. Michelle Alvarado & Lewis Ntaimo, 2018. "Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming," Health Care Management Science, Springer, vol. 21(1), pages 87-104, March.
    9. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    10. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    11. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    12. Chaithanya Bandi & Diwakar Gupta, 2020. "Operating Room Staffing and Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 958-974, September.
    13. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    14. James E. Falk, 1976. "Technical Note—Exact Solutions of Inexact Linear Programs," Operations Research, INFORMS, vol. 24(4), pages 783-787, August.
    15. Nagurney, Anna & Nagurney, Ladimer S., 2012. "Medical nuclear supply chain design: A tractable network model and computational approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 865-874.
    16. Mohammad Namakshenas & Aleida Braaksma & Mohammad Mahdavi Mazdeh, 2022. "Minimising total earliness and tardiness with periodically supplied non-renewable resource profiles," International Journal of Production Research, Taylor & Francis Journals, vol. 60(10), pages 3170-3181, May.
    17. Morikawa, Katsumi & Takahashi, Katsuhiko, 2017. "Scheduling appointments for walk-ins," International Journal of Production Economics, Elsevier, vol. 190(C), pages 60-66.
    18. Bastos, Leonardo S.L. & Marchesi, Janaina F. & Hamacher, Silvio & Fleck, Julia L., 2019. "A mixed integer programming approach to the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 831-840.
    19. Bjorn P. Berg & Brian T. Denton, 2017. "Fast Approximation Methods for Online Scheduling of Outpatient Procedure Centers," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 631-644, November.
    20. Eduardo Pérez & Lewis Ntaimo & César Malavé & Carla Bailey & Peter McCormack, 2013. "Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine," Health Care Management Science, Springer, vol. 16(4), pages 281-299, December.
    21. Chi-Lun Rau & Pei-Fang Tsai & Sheau-Farn Liang & Jhih-Cian Tan & Hong-Cheng Syu & Yue-Ling Jheng & Ting-Syuan Ciou & Fu-Shan Jaw, 2013. "Using discrete-event simulation in strategic capacity planning for an outpatient physical therapy service," Health Care Management Science, Springer, vol. 16(4), pages 352-365, December.
    22. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    23. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    24. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    25. Qingxia Kong & Shan Li & Nan Liu & Chung-Piaw Teo & Zhenzhen Yan, 2020. "Appointment Scheduling Under Time-Dependent Patient No-Show Behavior," Management Science, INFORMS, vol. 66(8), pages 3480-3500, August.
    26. Antoine Legrain & Marie-Andrée Fortin & Nadia Lahrichi & Louis-Martin Rousseau, 2015. "Online stochastic optimization of radiotherapy patient scheduling," Health Care Management Science, Springer, vol. 18(2), pages 110-123, June.
    27. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    28. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    29. Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
    30. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    31. J Patrick & M L Puterman, 2007. "Improving resource utilization for diagnostic services through flexible inpatient scheduling: A method for improving resource utilization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 235-245, February.
    32. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    33. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    34. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    3. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    4. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    5. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    6. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    7. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    8. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    9. Matthias Deceuninck & Stijn Vuyst & Dieter Claeys & Dieter Fiems, 2021. "Appointment games with unobservable and observable schedules," Annals of Operations Research, Springer, vol. 307(1), pages 93-110, December.
    10. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    11. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    12. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    13. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.
    14. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    15. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    16. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    17. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    18. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    19. Clifford Stein & Van-Anh Truong & Xinshang Wang, 2020. "Advance Service Reservations with Heterogeneous Customers," Management Science, INFORMS, vol. 66(7), pages 2929-2950, July.
    20. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1018-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.