IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v240y2015i1p245-257.html
   My bibliography  Save this article

Outpatient appointment scheduling given individual day-dependent no-show predictions

Author

Listed:
  • Samorani, Michele
  • LaGanga, Linda R.

Abstract

This paper examines the combined use of predictive analytics, optimization, and overbooking to schedule outpatient appointments in the presence of no-shows. We tackle the problem of optimally overbooking appointments given no-show predictions that depend on the individual appointment characteristics and on the appointment day. The goal is maximizing the number of patients seen while minimizing waiting time and overtime. Our analysis leads to the definition of a near-optimal and simple heuristic which consists of giving same-day appointments to likely shows and future-day appointments to likely no-shows. We validate our findings by performing extensive simulation tests based on an empirical data set of nearly fifty thousand appointments from a real outpatient clinic. The results suggest that our heuristic can lead to a substantial increase in performance and that it should be preferred to open access under most parameter configurations. Our paper will be of great interest to practitioners who want to improve their clinic performance by using individual no-show predictions to guide appointment scheduling.

Suggested Citation

  • Samorani, Michele & LaGanga, Linda R., 2015. "Outpatient appointment scheduling given individual day-dependent no-show predictions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 245-257.
  • Handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:245-257
    DOI: 10.1016/j.ejor.2014.06.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714005372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.06.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Samorani & Manuel Laguna & Robert Kirk DeLisle & Daniel C. Weaver, 2011. "A Randomized Exhaustive Propositionalization Approach for Molecule Classification," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 331-345, August.
    2. Jeffrey M. Alden & Robert L. Smith, 1992. "Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes," Operations Research, INFORMS, vol. 40(3-supplem), pages 183-194, June.
    3. Y Huang & P Zuniga, 2012. "Dynamic overbooking scheduling system to improve patient access," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(6), pages 810-820, June.
    4. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    5. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    6. K J Glowacka & R M Henry & J H May, 2009. "A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1056-1068, August.
    7. Schütz, Hans-Jörg & Kolisch, Rainer, 2012. "Approximate dynamic programming for capacity allocation in the service industry," European Journal of Operational Research, Elsevier, vol. 218(1), pages 239-250.
    8. Bo Zeng & Ayten Turkcan & Ji Lin & Mark Lawley, 2010. "Clinic scheduling models with overbooking for patients with heterogeneous no-show probabilities," Annals of Operations Research, Springer, vol. 178(1), pages 121-144, July.
    9. Qu, Xiuli & Rardin, Ronald L. & Williams, Julie Ann S. & Willis, Deanna R., 2007. "Matching daily healthcare provider capacity to demand in advanced access scheduling systems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 812-826, December.
    10. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    11. Nan Liu & Serhan Ziya, 2014. "Panel Size and Overbooking Decisions for Appointment-Based Services under Patient No-Shows," Production and Operations Management, Production and Operations Management Society, vol. 23(12), pages 2209-2223, December.
    12. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    13. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    2. Dantas, Leila F. & Fleck, Julia L. & Cyrino Oliveira, Fernando L. & Hamacher, Silvio, 2018. "No-shows in appointment scheduling – a systematic literature review," Health Policy, Elsevier, vol. 122(4), pages 412-421.
    3. Kelly L Colwell & Karen H Larwin, 2019. "Societal Health and Improvement of Access to Care," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 19(5), pages 14659-14668, July.
    4. Baş, Seda & Carello, Giuliana & Lanzarone, Ettore & Yalçındağ, Semih, 2018. "An appointment scheduling framework to balance the production of blood units from donation," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1124-1143.
    5. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    6. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    7. Xuanzhu Fan & Jiafu Tang & Chongjun Yan, 2020. "Appointment scheduling optimization with two stages diagnosis for clinic outpatient," Computational Statistics, Springer, vol. 35(2), pages 469-490, June.
    8. Zhou, Wenhui & Wan, Qiang & Zhang, Ren-Qian, 2017. "Choosing among hospitals in the subsidized health insurance system of China: A sequential game approach," European Journal of Operational Research, Elsevier, vol. 257(2), pages 568-585.
    9. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    10. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    11. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    12. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    13. Gheno Gloria, 2018. "A new link function for the prediction of binary variables," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 4(2), pages 67-77, November.
    14. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    15. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    16. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    17. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    18. M. M. Malik & S. Abdallah & M. Ala’raj, 2018. "Data mining and predictive analytics applications for the delivery of healthcare services: a systematic literature review," Annals of Operations Research, Springer, vol. 270(1), pages 287-312, November.
    19. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    20. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    3. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    4. R. K. Jha & B. S. Sahay & P. Charan, 2016. "Healthcare operations management: a structured literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 259-279, September.
    5. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    6. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.
    7. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    8. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    9. Murtaza Nasir & Nichalin Summerfield & Ali Dag & Asil Oztekin, 2020. "A service analytic approach to studying patient no-shows," Service Business, Springer;Pan-Pacific Business Association, vol. 14(2), pages 287-313, June.
    10. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    11. Yong-Hong Kuo & Hari Balasubramanian & Yan Chen, 2020. "Medical appointment overbooking and optimal scheduling: tradeoffs between schedule efficiency and accessibility to service," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 72-101, March.
    12. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    13. Lara Wiesche & Matthias Schacht & Brigitte Werners, 2017. "Strategies for interday appointment scheduling in primary care," Health Care Management Science, Springer, vol. 20(3), pages 403-418, September.
    14. Jaelynn Oh & Xuanming Su, 2022. "Optimal Pricing and Overbooking of Reservations," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 928-940, March.
    15. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    16. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    17. Agrawal, Deepak & Pang, Guodong & Kumara, Soundar, 2023. "Preference based scheduling in a healthcare provider network," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1318-1335.
    18. Hari Balasubramanian & Sebastian Biehl & Longjie Dai & Ana Muriel, 2014. "Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments," Health Care Management Science, Springer, vol. 17(1), pages 31-48, March.
    19. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    20. Jiayi Liu & Jingui Xie & Kum Khiong Yang & Zhichao Zheng, 2019. "Effects of Rescheduling on Patient No-Show Behavior in Outpatient Clinics," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 780-797, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:245-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.