IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v101y2022i1d10.1007_s11134-021-09724-9.html
   My bibliography  Save this article

Appointment-driven queueing systems with non-punctual customers

Author

Listed:
  • Oualid Jouini

    (Université Paris-Saclay)

  • Saif Benjaafar

    (University of Minnesota)

  • Bingnan Lu

    (University of Minnesota)

  • Siqiao Li

    (Shanghai Jiaotong University
    Vrije Universiteit Amsterdam)

  • Benjamin Legros

    (EM Normandie)

Abstract

We consider a single-server queueing system where a finite number of customers arrive over time to receive service. Arrivals are driven by appointments, with a scheduled appointment time associated with each customer. However, customers are not necessarily punctual and may arrive either earlier or later than their scheduled appointment times or may not show up at all. Arrival times relative to scheduled appointments are random. Customers are not homogeneous in their punctuality and show-up behavior. The time between consecutive appointments is allowed to vary from customer to customer. Moreover, service times are assumed to be random with a $$ \gamma $$ γ -Cox distribution, a class of phase-type distributions known to be dense in the field of positive distributions. We develop both exact and approximate approaches for characterizing the distribution of the number of customers seen by each arrival. We show how this can be used to obtain the distribution of waiting time for each customer. We prove that the approximation provides an upper bound for the expected customer waiting time when non-punctuality is uniformly distributed. We also examine the impact of non-punctuality on system performance. In particular, we prove that non-punctuality deteriorates waiting time performance regardless of the distribution of non-punctuality. In addition, we illustrate how our approach can be used to support individualized appointment scheduling.

Suggested Citation

  • Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
  • Handle: RePEc:spr:queues:v:101:y:2022:i:1:d:10.1007_s11134-021-09724-9
    DOI: 10.1007/s11134-021-09724-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-021-09724-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-021-09724-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rowan Wang & Oualid Jouini & Saif Benjaafar, 2014. "Service Systems with Finite and Heterogeneous Customer Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 365-380, July.
    2. A. Soriano, 1966. "Comparison of Two Scheduling Systems," Operations Research, INFORMS, vol. 14(3), pages 388-397, June.
    3. Michele Samorani & Subhamoy Ganguly, 2016. "Optimal Sequencing of Unpunctual Patients in High-Service-Level Clinics," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 330-346, February.
    4. Mahmut Parlar & Moosa Sharafali, 2008. "Dynamic Allocation of Airline Check-In Counters: A Queueing Optimization Approach," Management Science, INFORMS, vol. 54(8), pages 1410-1424, August.
    5. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    6. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    7. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    8. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    9. Refael Hassin & Sharon Mendel, 2008. "Scheduling Arrivals to Queues: A Single-Server Model with No-Shows," Management Science, INFORMS, vol. 54(3), pages 565-572, March.
    10. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    11. Wang, P. Patrick, 1999. "Sequencing and scheduling N customers for a stochastic server," European Journal of Operational Research, Elsevier, vol. 119(3), pages 729-738, December.
    12. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    13. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    14. Benjamin Legros & Oualid Jouini & Ger Koole, 2018. "A Uniformization Approach for the Dynamic Control of Queueing Systems with Abandonments," Operations Research, INFORMS, vol. 66(1), pages 200-209, January.
    15. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    16. Song-Hee Kim & Ward Whitt & Won Chul Cha, 2018. "A Data-Driven Model of an Appointment-Generated Arrival Process at an Outpatient Clinic," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 181-199, February.
    17. Bo Zeng & Ayten Turkcan & Ji Lin & Mark Lawley, 2010. "Clinic scheduling models with overbooking for patients with heterogeneous no-show probabilities," Annals of Operations Research, Springer, vol. 178(1), pages 121-144, July.
    18. Lawrence W. Robinson & Rachel R. Chen, 2010. "A Comparison of Traditional and Open-Access Policies for Appointment Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 330-346, June.
    19. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    20. Deceuninck, Matthias & Fiems, Dieter & De Vuyst, Stijn, 2018. "Outpatient scheduling with unpunctual patients and no-shows," European Journal of Operational Research, Elsevier, vol. 265(1), pages 195-207.
    21. Jianzhe Luo & Vidyadhar G. Kulkarni & Serhan Ziya, 2012. "Appointment Scheduling Under Patient No-Shows and Service Interruptions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 670-684, October.
    22. Han Zhu & Youhua (Frank) Chen & Eman Leung & Xing Liu, 2018. "Outpatient appointment scheduling with unpunctual patients," International Journal of Production Research, Taylor & Francis Journals, vol. 56(5), pages 1982-2002, March.
    23. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    24. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    2. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    3. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).
    4. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    5. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    6. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    7. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    8. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    9. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    10. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    11. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    12. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    13. Song-Hee Kim & Ward Whitt & Won Chul Cha, 2018. "A Data-Driven Model of an Appointment-Generated Arrival Process at an Outpatient Clinic," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 181-199, February.
    14. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    15. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    16. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.
    17. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    18. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    19. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    20. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:101:y:2022:i:1:d:10.1007_s11134-021-09724-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.