IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v301y2022i1p254-276.html
   My bibliography  Save this article

Integrating group frontier and metafrontier directional distance functions to evaluate the efficiency of production units

Author

Listed:
  • Yu, Ming-Miin
  • See, Kok Fong
  • Hsiao, Bo

Abstract

Over the last decade, many studies have adopted the data envelopment analysis (DEA)-type metafrontier framework to relax the constraint of technological heterogeneity. In conventional metafrontier analyzes, either radial or nonradial DEA models are used in two separate DEA efficiency analyzes. The results of a metafrontier analysis may be biased if this approach is adopted in a nonradial DEA model. One possible problem is that the value of the technology gap ratio is greater than one because the technology gaps to be estimated for decision-making units (DMUs) under different technology groups relative to the metatechnology have no connection between group frontiers and metafrontiers. Furthermore, the direction of projection of each DMU onto the metafrontier is totally independent of the direction to the efficiency frontier of the respective group frontier. Our proposed integration of group technology and metatechnology constraints into a union model offers a possible solution to the existing metafrontier problem and provides more robust metafrontier results regardless of whether radial or nonradial DEA models are used. Four numerical examples and one empirical application are demonstrated, and the results appear to support the use of our proposed model.

Suggested Citation

  • Yu, Ming-Miin & See, Kok Fong & Hsiao, Bo, 2022. "Integrating group frontier and metafrontier directional distance functions to evaluate the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 301(1), pages 254-276.
  • Handle: RePEc:eee:ejores:v:301:y:2022:i:1:p:254-276
    DOI: 10.1016/j.ejor.2021.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    2. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    3. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    4. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    5. Chambers, Robert G., 1996. "A New Look at Exact Input, Output, Productivity, and Technical Change Measurement," Working Papers 197840, University of Maryland, Department of Agricultural and Resource Economics.
    6. Chen, Ying-Hsiu & Lai, Po-Lin & Piboonrungroj, Pairach, 2017. "The relationship between airport performance and privatisation policy: A nonparametric metafrontier approach," Journal of Transport Geography, Elsevier, vol. 62(C), pages 229-235.
    7. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    8. Chuang-Min Chao & Ming-Miin Yu & Nan-Hsing Hsiung & Li-Hsueh Chen, 2018. "Profitability efficiency, marketability efficiency and technology gaps in Taiwan’s banking industry: meta-frontier network data envelopment analysis," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 233-250, January.
    9. Kuan-Chen Chen & Hong-Ming Chen & Li-Nien Chien & Ming-Miin Yu, 2019. "Productivity growth and quality changes of hospitals in Taiwan: does ownership matter?," Health Care Management Science, Springer, vol. 22(3), pages 451-461, September.
    10. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    11. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    12. Qunwei Wang & Ye Hang & Jin‐Li Hu & Ching‐Ren Chiu, 2018. "An alternative metafrontier framework for measuring the heterogeneity of technology," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 427-445, August.
    13. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    14. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    15. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    16. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    17. Habtamu Alem & Gudbrand Lien & J. Brian Hardaker & Atle Guttormsen, 2019. "Regional differences in technical efficiency and technological gap of Norwegian dairy farms: a stochastic meta-frontier model," Applied Economics, Taylor & Francis Journals, vol. 51(4), pages 409-421, January.
    18. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    19. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    20. Torben Tiedemann & Tammo Francksen & Uwe Latacz-Lohmann, 2011. "Assessing the performance of German Bundesliga football players: a non-parametric metafrontier approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 571-587, December.
    21. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    22. Víctor Giménez & Jorge R. Keith & Diego Prior, 2019. "Do healthcare financing systems influence hospital efficiency? A metafrontier approach for the case of Mexico," Health Care Management Science, Springer, vol. 22(3), pages 549-559, September.
    23. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    24. Afsharian, Mohsen & Podinovski, Victor V., 2018. "A linear programming approach to efficiency evaluation in nonconvex metatechnologies," European Journal of Operational Research, Elsevier, vol. 268(1), pages 268-280.
    25. Wang, Nannan & Chen, Ji & Yao, Shengnan & Chang, Yen-Chiang, 2018. "A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2606-2612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ming-Miin & Rakshit, Ipsita, 2024. "How to establish input and output targets for airlines with heterogeneous production technologies: A nash bargaining DEA approach within the meta-frontier framework," Journal of Air Transport Management, Elsevier, vol. 116(C).
    2. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.
    3. Chen, Lei & Wang, Ying-Ming, 2023. "Game directional distance function in meta-frontier data envelopment analysis," Omega, Elsevier, vol. 121(C).
    4. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    5. Xue, Longfei & Gong, Yeming & Yang, Bingnan & Xu, Xianhao, 2024. "Resilience, efficiency fluctuations, and regional heterogeneity in disaster: An empirical study on logistics," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Mehdiloo & Jafar Sadeghi & Kristiaan Kerstens, 2024. "Top Down Axiomatic Modeling of Metatechnologies and Evaluating Directional Economic Efficiency," Working Papers 2024-EQM-03, IESEG School of Management.
    2. Ching-Ren Chiu & Ming-Chung Chang & Jin-Li Hu, 2022. "Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries," Journal of Productivity Analysis, Springer, vol. 57(3), pages 297-311, June.
    3. Yu, Ming-Miin & Lin, Chung-I & Chen, Kuan-Chen & Chen, Li-Hsueh, 2021. "Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach," Omega, Elsevier, vol. 98(C).
    4. Ding, Tao & Yang, Jie & Wu, Huaqing & Liang, Liang, 2022. "Land use efficiency and technology gaps of urban agglomerations in China: An extended non-radial meta-frontier approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    5. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    6. See, Kok Fong & Md Hamzah, Nurhafiza & Yu, Ming-Miin, 2021. "Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    7. Ming-Miin Yu & Li-Hsueh Chen, 2020. "A meta-frontier network data envelopment analysis approach for the measurement of technological bias with network production structure," Annals of Operations Research, Springer, vol. 287(1), pages 495-514, April.
    8. Jin, Qianying & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2020. "Metafrontier productivity indices: Questioning the common convexification strategy," European Journal of Operational Research, Elsevier, vol. 283(2), pages 737-747.
    9. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    10. Yu, Ming-Miin, 2020. "Nerlovian profit inefficiency in non-fully-competitive settings: Definition and decomposition," Omega, Elsevier, vol. 90(C).
    11. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    12. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    13. Zhencheng Xing & Jigan Wang & Jie Zhang, 2017. "CO 2 Emission Performance, Mitigation Potential, and Marginal Abatement Cost of Industries Covered in China’s Nationwide Emission Trading Scheme: A Meta-Frontier Analysis," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    14. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    15. Hung-pin Lai & Cliff J. Huang & Tsu-Tan Fu, 2020. "Estimation of the production profile and metafrontier technology gap: a quantile approach," Empirical Economics, Springer, vol. 58(6), pages 2709-2731, June.
    16. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    17. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    18. Jung Ho Park & Kwangsoo Shin, 2018. "Efficiency of Government-Sponsored R&D Projects: A Metafrontier DEA Approach," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    19. Ren, Tiantian & Wang, Na & Xiao, Helu & Zhou, Zhongbao, 2024. "Efficiency of funding to rural revitalization and regional heterogeneity of technologies in China: Dynamic network nonconvex metafrontiers," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    20. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:301:y:2022:i:1:p:254-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.