IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i1p151-158.html
   My bibliography  Save this article

Robust strategies for natural gas procurement

Author

Listed:
  • Aouam, Tarik
  • Rardin, Ronald
  • Abrache, Jawad

Abstract

In order to serve their customers, natural gas local distribution companies (LDCs) can select from a variety of financial and non-financial contracts. The present paper is concerned with the choice of an appropriate portfolio of natural gas purchases that would allow a LDC to satisfy its demand with a minimum tradeoff between cost and risk, while taking into account risk associated with modeling error. We propose two types of strategies for natural gas procurement. Dynamic strategies model the procurement problem as a mean-risk stochastic program with various risk measures. Naive strategies hedge a fixed fraction of winter demand. The hedge is allocated equally between storage, futures and options. We propose a simulation framework to evaluate the proposed strategies and show that: (i) when the appropriate model for spot prices and its derivatives is used, dynamic strategies provide cheaper gas with low risk compared to naive strategies. (ii) In the presence of a modeling error, dynamic strategies are unable to control the variance of the procurement cost though they provide cheaper cost on average. Based on these results, we define robust strategies as convex combinations of dynamic and naive strategies. The weight of each strategy represents the fraction of demand to be satisfied following this strategy. A mean-variance problem is then solved to obtain optimal weights and construct an efficient frontier of robust strategies that take advantage of the diversification effect.

Suggested Citation

  • Aouam, Tarik & Rardin, Ronald & Abrache, Jawad, 2010. "Robust strategies for natural gas procurement," European Journal of Operational Research, Elsevier, vol. 205(1), pages 151-158, August.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:151-158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00943-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Michel Guldmann, 1986. "A Marginal-Cost Pricing Model for Gas Distribution Utilities," Operations Research, INFORMS, vol. 34(6), pages 851-863, December.
    2. William Avery & Gerald G. Brown & John A. Rosenkranz & R. Kevin Wood, 1992. "Optimization of Purchase, Storage and Transmission Contracts for Natural Gas Utilities," Operations Research, INFORMS, vol. 40(3), pages 446-462, June.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    5. Bopp, A. E. & Kannan, V. R. & Palocsay, S. W. & Stevens, S. P., 1996. "An optimization model for planning natural gas purchases, transportation, storage and deliverability," Omega, Elsevier, vol. 24(5), pages 511-522, October.
    6. Jean-Michel Guldmann, 1983. "Supply, Storage, and Service Reliability Decisions by Gas Distribution Utilities: A Chance-Constrained Approach," Management Science, INFORMS, vol. 29(8), pages 884-906, August.
    7. Pindyck, Robert S, 1993. "A Note on Competitive Investment under Uncertainty," American Economic Review, American Economic Association, vol. 83(1), pages 273-277, March.
    8. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    9. Kumar Muthuraman & Tarik Aouam & Ronald Rardin, 2008. "Regulation of Natural Gas Distribution Using Policy Benchmarks," Operations Research, INFORMS, vol. 56(5), pages 1131-1145, October.
    10. Richard P. O'Neill & Mark Williard & Bert Wilkins & Ralph Pike, 1979. "A Mathematical Programming Model for Allocation of Natural Gas," Operations Research, INFORMS, vol. 27(5), pages 857-873, October.
    11. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    12. Guldmann, Jean-Michel & Wang, Fahui, 1999. "Optimizing the natural gas supply mix of local distribution utilities," European Journal of Operational Research, Elsevier, vol. 112(3), pages 598-612, February.
    13. Christopher C. Geczy & Bernadette A. Minton & Catherine Schrand, "undated". "Choices Among Alternative Risk Management Strategies: Evidence from the Natural Gas Industry," Rodney L. White Center for Financial Research Working Papers 28-99, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aouam, Tarik & Muthuraman, Kumar & Rardin, Ronal L., 2016. "Robust optimization policy benchmarks and modeling errors in natural gas," European Journal of Operational Research, Elsevier, vol. 250(3), pages 807-815.
    2. Psarras, John, 2016. "Multicriteria decision support to evaluate potential long-term natural gas supply alternatives: The case of GreeceAuthor-Name: Androulaki, Stella," European Journal of Operational Research, Elsevier, vol. 253(3), pages 791-810.
    3. Syed, Zaki & Lawryshyn, Yuri, 2020. "Risk analysis of an underground gas storage facility using a physics-based system performance model and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Oliveira, Sydnei Marssal de & Ribeiro, Celma de Oliveira & Cicogna, Maria Paula Vieira, 2018. "Uncertainty effects on production mix and on hedging decisions: The case of Brazilian ethanol and sugar," Energy Economics, Elsevier, vol. 70(C), pages 516-524.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarras, John, 2016. "Multicriteria decision support to evaluate potential long-term natural gas supply alternatives: The case of GreeceAuthor-Name: Androulaki, Stella," European Journal of Operational Research, Elsevier, vol. 253(3), pages 791-810.
    2. Guldmann, Jean-Michel & Wang, Fahui, 1999. "Optimizing the natural gas supply mix of local distribution utilities," European Journal of Operational Research, Elsevier, vol. 112(3), pages 598-612, February.
    3. Aouam, Tarik & Muthuraman, Kumar & Rardin, Ronal L., 2016. "Robust optimization policy benchmarks and modeling errors in natural gas," European Journal of Operational Research, Elsevier, vol. 250(3), pages 807-815.
    4. Ozelkan, Ertunga C. & D'Ambrosio, Alfred & Teng, S. Gary, 2008. "Optimizing liquefied natural gas terminal design for effective supply-chain operations," International Journal of Production Economics, Elsevier, vol. 111(2), pages 529-542, February.
    5. Gabriel, Steven A. & Zhuang, Jifang & Kiet, Supat, 2005. "A large-scale linear complementarity model of the North American natural gas market," Energy Economics, Elsevier, vol. 27(4), pages 639-665, July.
    6. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    7. Kumar Muthuraman & Tarik Aouam & Ronald Rardin, 2008. "Regulation of Natural Gas Distribution Using Policy Benchmarks," Operations Research, INFORMS, vol. 56(5), pages 1131-1145, October.
    8. Pongsakdi, Arkadej & Rangsunvigit, Pramoch & Siemanond, Kitipat & Bagajewicz, Miguel J., 2006. "Financial risk management in the planning of refinery operations," International Journal of Production Economics, Elsevier, vol. 103(1), pages 64-86, September.
    9. Lise, Wietze & Hobbs, Benjamin F., 2008. "Future evolution of the liberalised European gas market: Simulation results with a dynamic model," Energy, Elsevier, vol. 33(7), pages 989-1004.
    10. Nicola Secomandi, 2010. "Optimal Commodity Trading with a Capacitated Storage Asset," Management Science, INFORMS, vol. 56(3), pages 449-467, March.
    11. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    12. Jirutitijaroen, Panida & Kim, Sujin & Kittithreerapronchai, Oran & Prina, José, 2013. "An optimization model for natural gas supply portfolios of a power generation company," Applied Energy, Elsevier, vol. 107(C), pages 1-9.
    13. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    14. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    15. Jung Ho Park & Kwangsoo Shin, 2018. "R&D Project Valuation Considering Changes of Economic Environment: A Case of a Pharmaceutical R&D Project," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    16. Lander, Diane M. & Pinches, George E., 1998. "Challenges to the Practical Implementation of Modeling and Valuing Real Options," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 537-567.
    17. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.
    18. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Cheng, Guanhui & Tan, Qian, 2016. "Bayesian interval robust optimization for sustainable energy system planning in Qiqihar City, China," Energy Economics, Elsevier, vol. 60(C), pages 357-376.
    19. Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
    20. Slade, Margaret E., 2001. "Valuing Managerial Flexibility: An Application of Real-Option Theory to Mining Investments," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 193-233, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:1:p:151-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.