IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v175y2006i3p1588-1604.html
   My bibliography  Save this article

Optimal control of road freight flows by route choice inducement: A case from Mexico

Author

Listed:
  • Moreno-Quintero, Eric

Abstract

No abstract is available for this item.

Suggested Citation

  • Moreno-Quintero, Eric, 2006. "Optimal control of road freight flows by route choice inducement: A case from Mexico," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1588-1604, December.
  • Handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1588-1604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00222-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrari, Paolo, 2002. "Road network toll pricing and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 471-483, June.
    2. Abbas, Khaled A. & Bell, Michael G. H., 1994. "System dynamics applicability to transportation modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(5), pages 373-390, September.
    3. Dantzig, George B. & Harvey, Roy P. & Lansdowne, Zachary F. & Robinson, David W. & Maier, Steven F., 1979. "Formulating and solving the network design problem by decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 5-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    2. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    3. Casady, Carter B. & Gómez-Ibáñez, José A. & Schwimmer, Emily, 2020. "Toll-managed lanes: A simplified benefit-cost analysis of seven US projects," Transport Policy, Elsevier, vol. 89(C), pages 38-53.
    4. Yingyi Huang & Yuliya Mamatok & Chun Jin, 2021. "Decision-making instruments for container seaport sustainable development: management platform and system dynamics model," Environment Systems and Decisions, Springer, vol. 41(2), pages 212-226, June.
    5. Marcycruz de Leon & Thomas M Fullerton Jr & Brian W Kelly, 2009. "Tolls, Exchange Rates, And Borderplex International Bridge Traffic," Articles, International Journal of Transport Economics, vol. 36(2).
    6. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    7. T. Kim & Sunduck Suh, 1988. "Toward developing a national transportation planning model: A bilevel programming approach for Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 22(1), pages 65-80, February.
    8. Bing Zhao & Hao Wu, 2022. "A System Dynamics Model of Multi-Airport Logistics System under the Impact of COVID-19: A Case of Jing-Jin-Ji Multi-Airport System in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    9. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    10. Ferrari, Paolo, 2014. "The dynamics of modal split for freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 163-176.
    11. Thomas M. Fullerton Jr. & Angel L. Molina Jr & Adam G. Walke, 2013. "Tolls, exchange rates, and northbound international bridge traffic from Mexico," Regional Science Policy & Practice, Wiley Blackwell, vol. 5(3), pages 305-321, August.
    12. Chen, Jiandong & Yu, Jie & Shen, Zhiyang & Song, Malin & Zhou, Ziqi, 2023. "Debt financing and maintenance expenditure: Theory and evidence on government-operated toll roads in China," Economic Systems, Elsevier, vol. 47(1).
    13. Shen, Yung-Shuen & Huang, Guan-Ting & Chang-Chien, Chien-Li & Huang, Lance Hongwei & Kuo, Chien-Hung & Hu, Allen H., 2023. "The impact of passenger electric vehicles on carbon reduction and environmental impact under the 2050 net zero policy in Taiwan," Energy Policy, Elsevier, vol. 183(C).
    14. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    16. Lu, Zhaoyang & Meng, Qiang, 2023. "Effects of asymmetric investment cost information on revenue-compensated build-operate-transfer highway contracts," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 71-92.
    17. Alberto Sardi & Enrico Sorano, 2019. "Dynamic Performance Management: An Approach for Managing the Common Goods," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    18. David Rees & Janet Stephenson & Debbie Hopkins & Adam Doering, 2017. "Exploring stability and change in transport systems: combining Delphi and system dynamics approaches," Transportation, Springer, vol. 44(4), pages 789-805, July.
    19. Tan, Zhijia & Yang, Hai, 2012. "Flexible build-operate-transfer contracts for road franchising under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1419-1439.
    20. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1588-1604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.