IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v54y2025ics175553452400068x.html
   My bibliography  Save this article

Context-aware Bayesian mixed multinomial logit model

Author

Listed:
  • Łukawska, Mirosława
  • Jensen, Anders Fjendbo
  • Rodrigues, Filipe

Abstract

Traditional choice models often entail the assumption that the preference parameters of the decision-maker are constant throughout time and across different choice situations, which may be too strong for certain choice modelling applications. This paper proposes an effective approach to model systematic, context-dependent heterogeneity, thereby introducing the concept of the context-aware Bayesian mixed multinomial logit model (C-MMNL). In this model, a neural network maps contextual information to interpretable shifts in the preference parameters of each individual in each choice occasion. The proposed model offers several key advantages. First, it supports both continuous and discrete variables, as well as complex non-linear interactions between both types of variables. Secondly, each context specification is considered jointly as a whole by the neural network, rather than each variable being considered independently. Finally, since the neural network parameters are shared across all decision-makers, it can leverage information from other decision-makers to infer the effect of a particular context on a particular decision-maker. Even though the context-aware Bayesian mixed multinomial logit model allows for flexible interactions between attributes, the increase in computational complexity is minor, compared to the mixed multinomial logit model. We illustrate the concept and interpretation of the proposed model in a simulation study. We furthermore present a real-world case study from the travel behaviour domain — a bicycle route choice model, based on a large-scale, crowdsourced dataset of GPS trajectories including 119,448 trips made by 8555 cyclists.

Suggested Citation

  • Łukawska, Mirosława & Jensen, Anders Fjendbo & Rodrigues, Filipe, 2025. "Context-aware Bayesian mixed multinomial logit model," Journal of choice modelling, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:eejocm:v:54:y:2025:i:c:s175553452400068x
    DOI: 10.1016/j.jocm.2024.100536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175553452400068X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    2. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    3. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    4. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    5. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    6. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    7. Mirosława Łukawska, 2024. "Quantitative modelling of cyclists’ route choice behaviour on utilitarian trips based on GPS data: associated factors and behavioural implications," Transport Reviews, Taylor & Francis Journals, vol. 44(5), pages 1045-1076, September.
    8. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    9. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    10. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    12. Łukawska, Mirosława & Cazor, Laurent & Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2024. "Revealing and reducing bias when modelling choice behaviour on imbalanced panel datasets," Journal of choice modelling, Elsevier, vol. 50(C).
    13. Papu Carrone, Andrea & Hoening, Valerie Maria & Jensen, Anders Fjendbo & Mabit, Stefan Eriksen & Rich, Jeppe, 2020. "Understanding car sharing preferences and mode substitution patterns: A stated preference experiment," Transport Policy, Elsevier, vol. 98(C), pages 139-147.
    14. Ossama Elshiewy & German Zenetti & Yasemin Boztug, 2017. "Differences Between Classical and Bayesian Estimates for Mixed Logit Models: A Replication Study," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 470-476, March.
    15. Hilbe, Joseph, 2009. "Data Analysis Using Regression and Multilevel/Hierarchical Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(b03).
    16. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    17. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    18. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    19. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    20. Stephan Meier & Charles D. Sprenger, 2015. "Temporal Stability of Time Preferences," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 273-286, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    2. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    3. Kassie, Girma T. & Zeleke, Fresenbet & Birhanu, Mulugeta Y. & Scarpa, Riccardo, 2020. "Reminder Nudge, Attribute Nonattendance, and Willingness to Pay in a Discrete Choice Experiment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304208, Agricultural and Applied Economics Association.
    4. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    5. Tagliafierro, C. & Boeri, M. & Longo, A. & Hutchinson, W.G., 2016. "Stated preference methods and landscape ecology indicators: An example of transdisciplinarity in landscape economic valuation," Ecological Economics, Elsevier, vol. 127(C), pages 11-22.
    6. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.
    7. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    8. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    9. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    11. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    12. Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).
    13. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    14. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    15. Alejandra R. Enríquez & Angel Bujosa Bestard, 2020. "Measuring the economic impact of climate-induced environmental changes on sun-and-beach tourism," Climatic Change, Springer, vol. 160(2), pages 203-217, May.
    16. Ugo Colombino & Marilena Locatelli, 2008. "Parameters Heterogeneity in a Model of Labour Supply: Exploring the Performance of Mixed Logit," CHILD Working Papers wp21_08, CHILD - Centre for Household, Income, Labour and Demographic economics - ITALY.
    17. Francisco Javier Amador & Rosa Marina González & Juan de Dios Ortúzar, 2004. "Preference heterogeneity and willingness to pay for travel time," Documentos de trabajo conjunto ULL-ULPGC 2004-12, Facultad de Ciencias Económicas de la ULPGC.
    18. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    19. repec:ehu:biltok:5571 is not listed on IDEAS
    20. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    21. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:54:y:2025:i:c:s175553452400068x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.