IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v39y2021ics175553452100018x.html
   My bibliography  Save this article

Assisted specification of discrete choice models

Author

Listed:
  • Ortelli, Nicola
  • Hillel, Tim
  • Pereira, Francisco C.
  • de Lapparent, Matthieu
  • Bierlaire, Michel

Abstract

Determining appropriate utility specifications for discrete choice models is time-consuming and prone to errors. With the availability of larger and larger datasets, as the number of possible specifications exponentially grows with the number of variables under consideration, the analysts need to spend increasing amounts of time on searching for good models through trial-and-error, while expert knowledge is required to ensure these models are sound. This paper proposes an algorithm that aims at assisting modelers in their search. Our approach translates the task into a multi-objective combinatorial optimization problem and makes use of a variant of the variable neighborhood search algorithm to generate sets of promising model specifications. We apply the algorithm both to semi-synthetic data and to real mode choice datasets as a proof of concept. The results demonstrate its ability to provide relevant insights in reasonable amounts of time so as to effectively assist the modeler in developing interpretable and powerful models.

Suggested Citation

  • Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).
  • Handle: RePEc:eee:eejocm:v:39:y:2021:i:c:s175553452100018x
    DOI: 10.1016/j.jocm.2021.100285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175553452100018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2021.100285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres, Cati & Hanley, Nick & Riera, Antoni, 2011. "How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 111-121, July.
    2. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    3. Lhéritier, Alix & Bocamazo, Michael & Delahaye, Thierry & Acuna-Agost, Rodrigo, 2019. "Airline itinerary choice modeling using machine learning," Journal of choice modelling, Elsevier, vol. 31(C), pages 198-209.
    4. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258.
    5. Othman Soufan & Dimitrios Kleftogiannis & Panos Kalnis & Vladimir B Bajic, 2015. "DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-23, February.
    6. Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
    7. Alwosheel, Ahmad & van Cranenburgh, Sander & Chorus, Caspar G., 2019. "‘Computer says no’ is not enough: Using prototypical examples to diagnose artificial neural networks for discrete choice analysis," Journal of choice modelling, Elsevier, vol. 33(C).
    8. Schoenberg, Ronald, 1997. "Constrained Maximum Likelihood," Computational Economics, Springer;Society for Computational Economics, vol. 10(3), pages 251-266, August.
    9. Francisco C. Pereira, 2019. "Rethinking travel behavior modeling representations through embeddings," Papers 1909.00154, arXiv.org.
    10. Pacheco, Joaquín & Casado, Silvia & Núñez, Laura, 2009. "A variable selection method based on Tabu search for logistic regression models," European Journal of Operational Research, Elsevier, vol. 199(2), pages 506-511, December.
    11. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    12. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    13. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    14. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
    15. Liang Tang & Chenfeng Xiong & Lei Zhang, 2015. "Decision tree method for modeling travel mode switching in a dynamic behavioral process," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(8), pages 833-850, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    2. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    3. Hernandez, Jose Ignacio & van Cranenburgh, Sander & Chorus, Caspar & Mouter, Niek, 2023. "Data-driven assisted model specification for complex choice experiments data: Association rules learning and random forests for Participatory Value Evaluation experiments," Journal of choice modelling, Elsevier, vol. 46(C).
    4. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    2. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    3. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    4. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    6. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    7. Rodrigo Acuna-Agost & Eoin Thomas & Alix Lhéritier, 2021. "Price elasticity estimation for deep learning-based choice models: an application to air itinerary choices," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 213-226, June.
    8. Youssef M. Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2021. "Discrete Choice Analysis with Machine Learning Capabilities," Papers 2101.10261, arXiv.org.
    9. Arkoudi, Ioanna & Krueger, Rico & Azevedo, Carlos Lima & Pereira, Francisco C., 2023. "Combining discrete choice models and neural networks through embeddings: Formulation, interpretability and performance," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    10. Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
    11. Morlotti, Chiara & Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato, 2023. "A latent class approach to estimate air travelers’ propensity toward connecting itineraries," Research in Transportation Economics, Elsevier, vol. 99(C).
    12. Irani-Kermani, Roozbeh & Jaenicke, Edward C., 2018. "Generalizing Variety Seeking Measurement from Brand Space to Product Attribute Space," 2018 Annual Meeting, August 5-7, Washington, D.C. 273818, Agricultural and Applied Economics Association.
    13. Chandra R. Bhat & Patrícia S. Lavieri, 2018. "A new mixed MNP model accommodating a variety of dependent non-normal coefficient distributions," Theory and Decision, Springer, vol. 84(2), pages 239-275, March.
    14. Wang, Shenhao & Wang, Qingyi & Bailey, Nate & Zhao, Jinhua, 2021. "Deep neural networks for choice analysis: A statistical learning theory perspective," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 60-81.
    15. Lorena Torres Lahoz & Francisco Camara Pereira & Georges Sfeir & Ioanna Arkoudi & Mayara Moraes Monteiro & Carlos Lima Azevedo, 2023. "Attitudes and Latent Class Choice Models using Machine learning," Papers 2302.09871, arXiv.org.
    16. Sclen, Håkon & Kallbekken, Steffen, 2011. "A choice experiment on fuel taxation and earmarking in Norway," Ecological Economics, Elsevier, vol. 70(11), pages 2181-2190, September.
    17. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    18. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    19. David Card, 2022. "Design-Based Research in Empirical Microeconomics," American Economic Review, American Economic Association, vol. 112(6), pages 1773-1781, June.
    20. Filiptseva, Anna & Filler, Günther & Odening, Martin, 2022. "Compensation Options for Quarantine Costs in Plant Production," 62nd Annual Conference, Stuttgart, Germany, September 7-9, 2022 329595, German Association of Agricultural Economists (GEWISOLA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:39:y:2021:i:c:s175553452100018x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.