IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.01704.html
   My bibliography  Save this paper

Understanding the decision-making process of choice modellers

Author

Listed:
  • Gabriel Nova
  • Sander van Cranenburgh
  • Stephane Hess

Abstract

Discrete Choice Modelling serves as a robust framework for modelling human choice behaviour across various disciplines. Building a choice model is a semi structured research process that involves a combination of a priori assumptions, behavioural theories, and statistical methods. This complex set of decisions, coupled with diverse workflows, can lead to substantial variability in model outcomes. To better understand these dynamics, we developed the Serious Choice Modelling Game, which simulates the real world modelling process and tracks modellers' decisions in real time using a stated preference dataset. Participants were asked to develop choice models to estimate Willingness to Pay values to inform policymakers about strategies for reducing noise pollution. The game recorded actions across multiple phases, including descriptive analysis, model specification, and outcome interpretation, allowing us to analyse both individual decisions and differences in modelling approaches. While our findings reveal a strong preference for using data visualisation tools in descriptive analysis, it also identifies gaps in missing values handling before model specification. We also found significant variation in the modelling approach, even when modellers were working with the same choice dataset. Despite the availability of more complex models, simpler models such as Multinomial Logit were often preferred, suggesting that modellers tend to avoid complexity when time and resources are limited. Participants who engaged in more comprehensive data exploration and iterative model comparison tended to achieve better model fit and parsimony, which demonstrate that the methodological choices made throughout the workflow have significant implications, particularly when modelling outcomes are used for policy formulation.

Suggested Citation

  • Gabriel Nova & Sander van Cranenburgh & Stephane Hess, 2024. "Understanding the decision-making process of choice modellers," Papers 2411.01704, arXiv.org.
  • Handle: RePEc:arx:papers:2411.01704
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.01704
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    3. Parady, Giancarlos & Ory, David & Walker, Joan, 2021. "The overreliance on statistical goodness-of-fit and under-reliance on model validation in discrete choice models: A review of validation practices in the transportation academic literature," Journal of choice modelling, Elsevier, vol. 38(C).
    4. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    5. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    6. Wicherts, Jelte M. & Veldkamp, Coosje Lisabet Sterre & Augusteijn, Hilde & Bakker, Marjan & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2016. "Degrees of freedom in planning, running, analyzing, and reporting psychological studies A checklist to avoid p-hacking," OSF Preprints umq8d, Center for Open Science.
    7. Stephane Hess & Andrew Daly, 2024. "Introduction to the Handbook of Choice Modelling," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 1, pages 1-4, Edward Elgar Publishing.
    8. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    9. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    10. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    11. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    12. Daly, Andrew & Hess, Stephane & de Jong, Gerard, 2012. "Calculating errors for measures derived from choice modelling estimates," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 333-341.
    13. Rotem Botvinik-Nezer & Felix Holzmeister & Colin F. Camerer & Anna Dreber & Juergen Huber & Magnus Johannesson & Michael Kirchler & Roni Iwanir & Jeanette A. Mumford & R. Alison Adcock & Paolo Avesani, 2020. "Variability in the analysis of a single neuroimaging dataset by many teams," Nature, Nature, vol. 582(7810), pages 84-88, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    2. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    3. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    4. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    5. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    6. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    7. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    8. Villas-Boas, Sofia B & Taylor, Rebecca & Krovetz, Hannah, 2016. "Willingness to Pay for Low Water Footprint Food Choices During Drought," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vh3x180, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
    10. Juan Carlos Martín & Concepción Román & Cira Mendoza, 2018. "Determinants for sun-and-beach self-catering accommodation selection," Tourism Economics, , vol. 24(3), pages 319-336, May.
    11. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Rolf Aaberge & Ugo Colombino, 2014. "Labour Supply Models," Contributions to Economic Analysis, in: Handbook of Microsimulation Modelling, volume 127, pages 167-221, Emerald Group Publishing Limited.
    13. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    14. Villas-Boas, Sofia B & Copfer, Jackie & Campbell, Nica, 2021. "Preferences for Sustainability and Supply Chain Essential Worker Conditions: Survey Evidence during COVID-19," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt0nv2n39w, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    16. Carolina Silva Costa & Cira Souza Pitombo & Felipe Lobo Umbelino de Souza, 2022. "Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    17. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt, 2022. "Shippers’ willingness to use flexible transportation services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 1-20.
    18. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    19. Rolf Aaberge & Ugo Colombino, 2018. "Structural Labour Supply Models and Microsimulation," International Journal of Microsimulation, International Microsimulation Association, vol. 11(1), pages 162-197.
    20. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.01704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.