IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.06410.html
   My bibliography  Save this paper

Improving choice model specification using reinforcement learning

Author

Listed:
  • Gabriel Nova
  • Sander van Cranenburgh
  • Stephane Hess

Abstract

Discrete choice modelling is a theory-driven modelling framework for understanding and forecasting choice behaviour. To obtain behavioural insights, modellers test several competing model specifications in their attempts to discover the 'true' data generation process. This trial-and-error process requires expertise, is time-consuming, and relies on subjective theoretical assumptions. Although metaheuristics have been proposed to assist choice modellers, they treat model specification as a classic optimisation problem, relying on static strategies, applying predefined rules, and neglecting outcomes from previous estimated models. As a result, current metaheuristics struggle to prioritise promising search regions, adapt exploration dynamically, and transfer knowledge to other modelling tasks. To address these limitations, we introduce a deep reinforcement learning-based framework where an 'agent' specifies models by estimating them and receiving rewards based on goodness-of-fit and parsimony. Results demonstrate the agent dynamically adapts its strategies to identify promising specifications across data generation processes, showing robustness and potential transferability, without prior domain knowledge.

Suggested Citation

  • Gabriel Nova & Sander van Cranenburgh & Stephane Hess, 2025. "Improving choice model specification using reinforcement learning," Papers 2506.06410, arXiv.org.
  • Handle: RePEc:arx:papers:2506.06410
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.06410
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.06410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.