IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1944-d528316.html
   My bibliography  Save this article

Flexible Transmission Network Expansion Planning Based on DQN Algorithm

Author

Listed:
  • Yuhong Wang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Lei Chen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Hong Zhou

    (State Grid Southwest China Branch, Chengdu 610041, China)

  • Xu Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Zongsheng Zheng

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Qi Zeng

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Li Jiang

    (State Grid Southwest China Branch, Chengdu 610041, China)

  • Liang Lu

    (State Grid Southwest China Branch, Chengdu 610041, China)

Abstract

Compared with static transmission network expansion planning (TNEP), multi-stage TNEP is more in line with the actual situation, but the modeling is also more complicated. This paper proposes a new multi-stage TNEP method based on the deep Q -network (DQN) algorithm, which can solve the multi-stage TNEP problem based on a static TNEP model. The main purpose of this research is to provide grid planners with a simple and effective multi-stage TNEP method, which is able to flexibly adjust the network expansion scheme without replanning. The proposed method takes into account the construction sequence of lines in the planning and completes the adaptive planning of lines by utilizing the interactive learning characteristics of the DQN algorithm. In order to speed up the learning efficiency of the algorithm and enable the agent to have a better judgment on the reward of the line-building action, the prioritized experience replay (PER) strategy is added to the DQN algorithm. In addition, the economy, reliability, and flexibility of the expansion scheme are considered in order to evaluate the scheme more comprehensively. The fault severity of equipment is considered on the basis of the Monte Carlo method to obtain a more comprehensive system state simulation. Finally, extensive studies are conducted with IEEE 24-bus reliability test system, and the computational results demonstrate the effectiveness and adaptability of the proposed flexible TNEP method.

Suggested Citation

  • Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1944-:d:528316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wook-Won Kim & Jong-Keun Park & Yong-Tae Yoon & Mun-Kyeom Kim, 2018. "Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times," Energies, MDPI, vol. 11(9), pages 1-19, September.
    2. Shaoyun Hong & Haozhong Cheng & Pingliang Zeng, 2017. "An N - k Analytic Method of Composite Generation and Transmission with Interval Load," Energies, MDPI, vol. 10(2), pages 1-17, January.
    3. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    4. Michael L. Littman, 2015. "Reinforcement learning improves behaviour from evaluative feedback," Nature, Nature, vol. 521(7553), pages 445-451, May.
    5. Zipeng Liang & Haoyong Chen & Xiaojuan Wang & Idris Ibn Idris & Bifei Tan & Cong Zhang, 2018. "An Extreme Scenario Method for Robust Transmission Expansion Planning with Wind Power Uncertainty," Energies, MDPI, vol. 11(8), pages 1-22, August.
    6. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    7. Jing Qiu & Junhua Zhao & Dongxiao Wang, 2017. "Flexible Multi-Objective Transmission Expansion Planning with Adjustable Risk Aversion," Energies, MDPI, vol. 10(7), pages 1-20, July.
    8. Junwei Cao & Wanlu Zhang & Zeqing Xiao & Haochen Hua, 2019. "Reactive Power Optimization for Transient Voltage Stability in Energy Internet via Deep Reinforcement Learning Approach," Energies, MDPI, vol. 12(8), pages 1-17, April.
    9. Amir Sadegh Zakeri & Hossein Askarian Abyaneh, 2017. "Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resources," Energies, MDPI, vol. 10(9), pages 1-15, September.
    10. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    11. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    12. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhong Wang & Xu Zhou & Yunxiang Shi & Zongsheng Zheng & Qi Zeng & Lei Chen & Bo Xiang & Rui Huang, 2021. "Transmission Network Expansion Planning Considering Wind Power and Load Uncertainties Based on Multi-Agent DDQN," Energies, MDPI, vol. 14(19), pages 1-28, September.
    2. Thongsavanh Keokhoungning & Suttichai Premrudeepreechacharn & Wullapa Wongsinlatam & Ariya Namvong & Tawun Remsungnen & Nongram Mueanrit & Kanda Sorn-in & Satit Kravenkit & Apirat Siritaratiwat & Chav, 2022. "Transmission Network Expansion Planning with High-Penetration Solar Energy Using Particle Swarm Optimization in Lao PDR toward 2030," Energies, MDPI, vol. 15(22), pages 1-19, November.
    3. Hamdi Abdi & Mansour Moradi & Sara Lumbreras, 2021. "Metaheuristics and Transmission Expansion Planning: A Comparative Case Study," Energies, MDPI, vol. 14(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    2. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    5. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    6. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    7. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    10. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    11. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    12. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.
    13. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    14. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    15. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    16. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    17. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Yujian Ye & Dawei Qiu & Huiyu Wang & Yi Tang & Goran Strbac, 2021. "Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning," Energies, MDPI, vol. 14(3), pages 1-22, January.
    19. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    20. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1944-:d:528316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.