IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v244y2024i2s0304407624000964.html
   My bibliography  Save this article

Vector autoregressions with dynamic factor coefficients and conditionally heteroskedastic errors

Author

Listed:
  • Gorgi, Paolo
  • Koopman, Siem Jan
  • Schaumburg, Julia

Abstract

We introduce a new and general methodology for analyzing vector autoregressive models with time-varying coefficient matrices and conditionally heteroskedastic disturbances. The proposed approach is transparent and simple to implement. It allows the derivation of well-defined impulse response functions that rely on the overall stability of the system. We present the finite sample properties of the model in a simulation study. In an empirical illustration we investigate the possibly time-varying relationships between U.S. industrial production, inflation, and bond spread. We empirically identify a time-varying linkage between economic and financial variables which are effectively described by a common dynamic factor. The impulse response analysis identifies substantial differences in the effects of financial shocks on output and inflation during crisis and non-crisis periods. The results also illustrate how the widely-used approach of fixing the VAR coefficients in the derivation of the impulse responses leads to a sizeable underestimation of the impact of a financial shock on output and inflation during some of the crises in our sample.

Suggested Citation

  • Gorgi, Paolo & Koopman, Siem Jan & Schaumburg, Julia, 2024. "Vector autoregressions with dynamic factor coefficients and conditionally heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 244(2).
  • Handle: RePEc:eee:econom:v:244:y:2024:i:2:s0304407624000964
    DOI: 10.1016/j.jeconom.2024.105750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624000964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    4. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    5. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    6. Pagan, Adrian, 1987. "Three Econometric Methodologies: A Critical Appraisal," Journal of Economic Surveys, Wiley Blackwell, vol. 1(1), pages 3-24.
    7. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    8. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    9. Hubrich, Kirstin & Tetlow, Robert J., 2015. "Financial stress and economic dynamics: The transmission of crises," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 100-115.
    10. Esteban Prieto & Sandra Eickmeier & Massimiliano Marcellino, 2016. "Time Variation in Macro‐Financial Linkages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1215-1233, November.
    11. Luca Gambetti & Alberto Musso, 2017. "Loan Supply Shocks and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 764-782, June.
    12. Cooley, Thomas F. & Leroy, Stephen F., 1985. "Atheoretical macroeconometrics: A critique," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 283-308, November.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    15. Angela Abbate & Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2016. "The Changing International Transmission of Financial Shocks: Evidence from a Classical Time‐Varying FAVAR," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 573-601, June.
    16. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    17. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    18. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    19. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    20. Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
    21. Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2015. "Classical time varying factor-augmented vector auto-regressive models—estimation, forecasting and structural analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 493-533, June.
    22. Koopman, Siem Jan & Mallee, Max I. P. & Van der Wel, Michel, 2010. "Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 329-343.
    23. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    24. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    25. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    26. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Gorgi & Siem Jan Koopman & Julia Schaumburg, 2021. "Vector Autoregressions with Dynamic Factor Coefficients and Conditionally Heteroskedastic Errors," Tinbergen Institute Discussion Papers 21-056/III, Tinbergen Institute.
    2. Thomas F. P. Wiesen & Paul M. Beaumont, 2024. "A joint impulse response function for vector autoregressive models," Empirical Economics, Springer, vol. 66(4), pages 1553-1585, April.
    3. Ellington, Michael & Florackis, Chris & Milas, Costas, 2017. "Liquidity shocks and real GDP growth: Evidence from a Bayesian time-varying parameter VAR," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 93-117.
    4. Vito Polito, 2020. "Nonlinear Business Cycle and Optimal Policy: A VSTAR Perspective," CESifo Working Paper Series 8060, CESifo.
    5. Cross, Jamie, 2019. "On the reduced macroeconomic volatility of the Australian economy: Good policy or good luck?," Economic Modelling, Elsevier, vol. 77(C), pages 174-186.
    6. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
    7. Francesco Corsello & Valerio Nispi Landi, 2020. "Labor Market and Financial Shocks: A Time‐Varying Analysis," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 777-801, June.
    8. Ellington, Michael, 2018. "Financial market illiquidity shocks and macroeconomic dynamics: Evidence from the UK," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 225-236.
    9. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    10. Gediminas Adomavicius & Jesse Bockstedt & Alok Gupta, 2012. "Modeling Supply-Side Dynamics of IT Components, Products, and Infrastructure: An Empirical Analysis Using Vector Autoregression," Information Systems Research, INFORMS, vol. 23(2), pages 397-417, June.
    11. Esteban Prieto & Sandra Eickmeier & Massimiliano Marcellino, 2016. "Time Variation in Macro‐Financial Linkages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1215-1233, November.
    12. Firmin Doko Tchatoka & Qazi Haque, 2024. "Revisiting the Macroeconomic Effects of Monetary Policy Shocks," The Economic Record, The Economic Society of Australia, vol. 100(329), pages 234-259, June.
    13. Nicholas Apergis & Stephen M. Miller, 2007. "Total Factor Productivity and Monetary Policy: Evidence from Conditional Volatility," International Finance, Wiley Blackwell, vol. 10(2), pages 131-152, July.
    14. Jin, Xiaoye & An, Ximeng, 2016. "Global financial crisis and emerging stock market contagion: A volatility impulse response function approach," Research in International Business and Finance, Elsevier, vol. 36(C), pages 179-195.
    15. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    16. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    17. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    18. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118, March.
    19. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    20. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    Keywords

    Time-varying parameters; Vector autoregressive model; Dynamic factor model; Kalman filter; Generalized autoregressive conditional heteroskedasticity; Orthogonal impulse response functions;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:244:y:2024:i:2:s0304407624000964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.