IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p1770-1798.html
   My bibliography  Save this article

Spatial autoregressions with an extended parameter space and similarity-based weights

Author

Listed:
  • Rossi, Francesca
  • Lieberman, Offer

Abstract

We provide in this paper asymptotic theory for a spatial autoregressive model (SAR, henceforth) in which the spatial coefficient, λ, is allowed to be less than or equal to unity, as well as consistent with a local to unit root (LUR) model and of the moderate integration (MI) from unity type, and the spatial weights are allowed to be similarity-based and data driven. Other special cases of our setting include the random walk, a model in which all the weights are equal, the standard SAR model in which λ<1 and the similarity based autoregression in which λ=1 and data do not display a natural order. As the norming rates for the asymptotic theory are very different in the λ<1 - compared with the λ=1 and LUR cases, we resort to random norming that treats all cases in a uniform manner. It turns out that standard CLT results prevail in a large class of models in which the infinity norm of the inverse of the weighting structure that characterizes the reduced-form process is Onγ , γ∈[0,1), and is non-standard in the case γ=1. We use a shifted profile likelihood to obtain results which are valid for all cases. A small simulation experiment supports our findings and the usefulness of our model is illustrated with an empirical application of the Boston housing data set in which the estimate of λ appeared to be very close to unity.

Suggested Citation

  • Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1770-1798
    DOI: 10.1016/j.jeconom.2022.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623000283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
    3. Franz C. Palm & Stephan Smeekes & Jean‐Pierre Urbain, 2008. "Bootstrap Unit‐Root Tests: Comparison and Extensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 371-401, March.
    4. Ansley, Craig F. & Kohn, Robert & Shively, Thomas S., 1992. "Computing p-values for the generalized Durbin-Watson and other invariant test statistics," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 277-300.
    5. Liu, Long, 2015. "A note on 2SLS estimation of the mixed regressive spatial autoregressive model," Economics Letters, Elsevier, vol. 134(C), pages 49-52.
    6. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    7. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    8. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    9. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    10. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    11. Robinson, Peter M. & Rossi, Francesca, 2015. "Refinements in maximum likelihood inference on spatial autocorrelation in panel data," Journal of Econometrics, Elsevier, vol. 189(2), pages 447-456.
    12. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    13. Lung-Fei Lee & Jihai Yu, 2013. "Near Unit Root in the Spatial Autoregressive Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 314-351, September.
    14. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    15. Clifford Lam & Pedro C.L. Souza, 2020. "Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 693-710, July.
    16. Gilley, Otis W. & Pace, R. Kelley, 1996. "On the Harrison and Rubinfeld Data," Journal of Environmental Economics and Management, Elsevier, vol. 31(3), pages 403-405, November.
    17. Zacharias Psaradakis, 2001. "Bootstrap Tests for an Autoregressive Unit Root in the Presence of Weakly Dependent Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(5), pages 577-594, September.
    18. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1032-1059, August.
    19. Lam, Clifford & Souza, Pedro C.L., 2015. "Detection and estimation of block structure in spatial weight matrix," LSE Research Online Documents on Economics 59898, London School of Economics and Political Science, LSE Library.
    20. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    22. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    23. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    24. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 9, pages 211-243, World Scientific Publishing Co. Pte. Ltd..
    25. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    26. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    27. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    28. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "On the Definition of Objective Probabilities by Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 11, pages 259-280, World Scientific Publishing Co. Pte. Ltd..
    29. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    30. Joris Pinkse & Margaret E. Slade & Craig Brett, 2002. "Spatial Price Competition: A Semiparametric Approach," Econometrica, Econometric Society, vol. 70(3), pages 1111-1153, May.
    31. Zeng-Hua Lu & Maxwell King, 2002. "Improving The Numerical Technique For Computing The Accumulated Distribution Of A Quadratic Form In Normal Variables," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 149-165.
    32. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    33. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    34. Sun, Yiguo, 2016. "Functional-coefficient spatial autoregressive models with nonparametric spatial weights," Journal of Econometrics, Elsevier, vol. 195(1), pages 134-153.
    35. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    36. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    37. Teitelbaum, Joshua C., 2013. "Asymmetric empirical similarity," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 346-351.
    38. Simlai, Prodosh, 2014. "Estimation of variance of housing prices using spatial conditional heteroskedasticity (SARCH) model with an application to Boston housing price data," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 17-30.
    39. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    40. Harry H. Kelejian & Gianfranco Piras, 2016. "An Extension of the J‐Test to a Spatial Panel Data Framework," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 387-402, March.
    41. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    42. Gabi Gayer & Offer Lieberman & Omer Yaffe, 2019. "Similarity-based model for ordered categorical data," Econometric Reviews, Taylor & Francis Journals, vol. 38(3), pages 263-278, March.
    43. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    44. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    2. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    3. Jungyoon Lee & Peter C.B. Phillips & Francesca Rossi, 2020. "Consistent Misspecification Testing in Spatial Autoregressive Models," Cowles Foundation Discussion Papers 2256, Cowles Foundation for Research in Economics, Yale University.
    4. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    5. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    6. repec:esx:essedp:772 is not listed on IDEAS
    7. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    8. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    9. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    10. Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
    11. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    12. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    13. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    14. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    15. Pesaran, M. Hashem & Yang, Cynthia Fan, 2021. "Estimation and inference in spatial models with dominant units," Journal of Econometrics, Elsevier, vol. 221(2), pages 591-615.
    16. Michaelides, Alexander & Kokas, Sotirios & Gupta, Abhimanyu, 2017. "Credit Market Spillovers: Evidence from a Syndicated Loan Market Network," CEPR Discussion Papers 12424, C.E.P.R. Discussion Papers.
    17. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    18. repec:jss:jstsof:35:i01 is not listed on IDEAS
    19. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    20. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    21. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    22. Wei, Chuanhua & Guo, Shuang & Zhai, Shufen, 2017. "Statistical inference of partially linear varying coefficient spatial autoregressive models," Economic Modelling, Elsevier, vol. 64(C), pages 553-559.

    More about this item

    Keywords

    Spatial autoregression; Similarity function; Weight matrix; Quasi-maximum-likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1770-1798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.