IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v170y2012i1p50-67.html
   My bibliography  Save this article

Pseudo-Gaussian and rank-based optimal tests for random individual effects in large n small T panels

Author

Listed:
  • Bennala, Nezar
  • Hallin, Marc
  • Paindaveine, Davy

Abstract

We consider the problem of detecting unobserved heterogeneity, that is, the problem of testing the absence of random individual effects in an n×T panel. We establish a local asymptotic normality property–with respect to intercept, regression coefficient, the scale parameter σ of the error, and the scale parameter σu of individual effects (which is the parameter of interest)–for given (scaled) density f1 of the error terms, when n tends to infinity and T is fixed. This result allows, via the Hájek representation theorem, for developing asymptotically optimal rank-based tests for the null hypothesis σu=0 (absence of individual effects). These tests are locally asymptotically optimal at correctly specified innovation densities f1, but remain valid irrespective of the actual underlying density. The limiting distribution of our test statistics is obtained both under the null and under sequences of contiguous alternatives. A local asymptotic linearity property is established in order to control for the effect of substituting estimators for nuisance parameters. The asymptotic relative efficiencies of the proposed procedures with respect to the corresponding pseudo-Gaussian parametric tests are derived. In particular, the van der Waerden version of our rank-based tests uniformly dominates, from the point of view of Pitman efficiency, the classical Honda test. Small-sample performances are investigated via a Monte-Carlo study, and confirm theoretical findings.

Suggested Citation

  • Bennala, Nezar & Hallin, Marc & Paindaveine, Davy, 2012. "Pseudo-Gaussian and rank-based optimal tests for random individual effects in large n small T panels," Journal of Econometrics, Elsevier, vol. 170(1), pages 50-67.
  • Handle: RePEc:eee:econom:v:170:y:2012:i:1:p:50-67
    DOI: 10.1016/j.jeconom.2012.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612000772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2012.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
    2. Marc Hallin & Bas Werker, 2003. "Semiparametric efficiency, distribution-freeness, and invariance," ULB Institutional Repository 2013/2119, ULB -- Universite Libre de Bruxelles.
    3. Yuzo Honda, 1985. "Testing the Error Components Model with Non-Normal Disturbances," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(4), pages 681-690.
    4. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    5. Chris D. Orme & Takashi Yamagata, 2006. "The asymptotic distribution of the F-test statistic for individual effects," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 404-422, November.
    6. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-872, July.
    7. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    8. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    9. Abdelhadi Akharif & Marc Hallin, 2003. "Efficient detection of random coefficients in autoregressive models," ULB Institutional Repository 2013/127956, ULB -- Universite Libre de Bruxelles.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    11. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    12. Marc Hallin & Jean-François Ingenbleek & Madan Lal Puri, 1984. "Linear serial rank tests for randomness against ARMA alternatives," ULB Institutional Repository 2013/2167, ULB -- Universite Libre de Bruxelles.
    13. Moulton, Brent R & Randolph, William C, 1989. "Alternative Tests of the Error Components Model," Econometrica, Econometric Society, vol. 57(3), pages 685-693, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelhadi Akharif & Mohamed Fihri & Marc Hallin & Amal Mellouk, 2018. "Optimal Pseudo-Gaussian and Rank-Based Random Coefficient Detection in Multiple Regression," Working Papers ECARES 2018-39, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nezar Bennala & Marc Hallin & Davy Paindaveine, 2010. "Rank‐based Optimal Tests for Random Effects in Panel Data," Working Papers ECARES ECARES 2010-018, ULB -- Universite Libre de Bruxelles.
    2. Chris D. Orme & Takashi Yamagata, 2006. "The asymptotic distribution of the F-test statistic for individual effects," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 404-422, November.
    3. Chris D. Orme & Takashi Yamagata, 2014. "A Heteroskedasticity-Robust F -Test Statistic for Individual Effects," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 431-471, August.
    4. Badi Baltagi & Seuck Heun Song & Byoung Cheol Jung, 2002. "Simple Lm Tests For The Unbalanced Nested Error Component Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 167-187.
    5. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    6. Lu, Xun & Su, Liangjun, 2020. "Determining individual or time effects in panel data models," Journal of Econometrics, Elsevier, vol. 215(1), pages 60-83.
    7. Jochmans, K., 2019. "Testing Correlation in Error-Component Models," Cambridge Working Papers in Economics 1993, Faculty of Economics, University of Cambridge.
    8. Wu, Jianhong & Zhu, Lixing, 2011. "Testing for serial correlation and random effects in a two-way error component regression model," Economic Modelling, Elsevier, vol. 28(6), pages 2377-2386.
    9. Koen Jochmans, 2020. "Testing for correlation in error‐component models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 860-878, November.
    10. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    11. Blanchard, Pierre & Matyas, Laszlo, 1996. "Robustness of tests for error components models to non-normality," Economics Letters, Elsevier, vol. 51(2), pages 161-167, May.
    12. Jinyong Hahn & Ruoyao Shi, 2021. "Breusch and Pagan’s (1980) Test Revisited," Working Papers 202110, University of California at Riverside, Department of Economics.
    13. Moulton, Brent R & Randolph, William C, 1989. "Alternative Tests of the Error Components Model," Econometrica, Econometric Society, vol. 57(3), pages 685-693, May.
    14. Wu, Jianhong & Qin, Jinxu & Ding, Qing, 2015. "A moment-based test for individual effects in the error component model with incomplete panels," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 153-162.
    15. repec:jss:jstsof:27:i02 is not listed on IDEAS
    16. Erling Häggström, 2002. "Properties of Honda’s test of random individual effects in non-linear regressions," Statistical Papers, Springer, vol. 43(2), pages 177-196, April.
    17. Bedi, A.S. & Edwards, J.H.Y., 2001. "The Impact of School Quality on Earnings and Educational Returns," ISS Working Papers - General Series 338, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    18. Bera, Anil K. & Sosa-Escudero, Walter & Yoon, Mann, 2001. "Tests for the error component model in the presence of local misspecification," Journal of Econometrics, Elsevier, vol. 101(1), pages 1-23, March.
    19. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    20. Geoffrey Shuetrim & Philip Lowe & Steve Morling, 1993. "The Determinants of Corporate Leverage: A Panel Data Analysis," RBA Research Discussion Papers rdp9313, Reserve Bank of Australia.
    21. Dagher, Leila & Bird, Lori & Heeter, Jenny, 2017. "Residential green power demand in the United States," Renewable Energy, Elsevier, vol. 114(PB), pages 1062-1068.

    More about this item

    Keywords

    Random effects; Panel data; Rank tests; Local asymptotic normality;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:170:y:2012:i:1:p:50-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.