IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v503y2025ics0304380025000456.html
   My bibliography  Save this article

Hybrid modeling approaches for accurate greenhouse climate prediction: Combining mechanistic models and LSTM neural networks

Author

Listed:
  • Xiong, Yuanhong
  • Su, Yuanping

Abstract

An accurate greenhouse climate model is crucial for controller design, energy consumption, and crop yield prediction. However, for a given greenhouse, considerable cost and time are required to study the thermal and mass transfer processes needed to construct an accurate greenhouse climate mechanistic model. To explore highly efficient modeling methods for greenhouse climate, this study proposes two hybrid modeling methods that combine mechanistic modeling with neural networks. The first method establishes a residual dataset for the greenhouse environment using mechanistic models and trains this residual model with an LSTM neural network. The second method employs LSTM neural networks and mechanistic models to predict greenhouse climate, then weights and combines the predictions from both models to achieve more accurate forecasting of greenhouse climate. In these two hybrid models, the mechanistic models use optimization algorithms for parameter identification and are validated with data from four different periods. A comparison of the results from the mechanistic model and the LSTM greenhouse climate prediction model shows that the neural network residual correction model exhibits better prediction accuracy and generalization capability in handling uncertain climate environment data. In contrast, the weighted fusion model places higher demands on the base models and shows considerable uncertainty in adaptability to different environments. The developed models in this study not only improve the prediction accuracy of greenhouse climate but also enhance the capability to handle complex and changing climatic conditions, thereby providing reliable decision-making support for greenhouse management and agricultural production.

Suggested Citation

  • Xiong, Yuanhong & Su, Yuanping, 2025. "Hybrid modeling approaches for accurate greenhouse climate prediction: Combining mechanistic models and LSTM neural networks," Ecological Modelling, Elsevier, vol. 503(C).
  • Handle: RePEc:eee:ecomod:v:503:y:2025:i:c:s0304380025000456
    DOI: 10.1016/j.ecolmodel.2025.111059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    2. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    3. Oksana Mandrikova & Bogdana Mandrikova, 2024. "Hybrid Model of Natural Time Series with Neural Network Component and Adaptive Nonlinear Scheme: Application for Anomaly Detection," Mathematics, MDPI, vol. 12(7), pages 1-15, April.
    4. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    2. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    3. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    4. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    5. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    6. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    7. Xinzhong Wang & Weiquan Fang & Zhongfeng Zhao, 2023. "Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    8. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    9. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    10. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    11. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Ajagekar, Akshay & Decardi-Nelson, Benjamin & You, Fengqi, 2024. "Energy management for demand response in networked greenhouses with multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 355(C).
    13. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    14. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    15. Xiaoxing Weng & Dapeng Tan & Gang Wang & Changqing Chen & Lianyou Zheng & Mingan Yuan & Duojiao Li & Bin Chen & Li Jiang & Xinrong Hu, 2023. "CFD Simulation and Optimization of the Leaf Collecting Mechanism for the Riding-Type Tea Plucking Machine," Agriculture, MDPI, vol. 13(5), pages 1-21, April.
    16. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    17. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    18. Dapeng Tan & Libin Zhang & Qinglin Ai, 2019. "An embedded self-adapting network service framework for networked manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 539-556, February.
    19. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    20. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:503:y:2025:i:c:s0304380025000456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.