IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v36y2014icp220-228.html
   My bibliography  Save this article

Forecasting tourism demand to Catalonia: Neural networks vs. time series models

Author

Listed:
  • Claveria, Oscar
  • Torra, Salvador

Abstract

The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourism demand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time series methods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals from all the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour, we also find that forecasts of tourist arrivals are more accurate than forecasts of overnight stays.

Suggested Citation

  • Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
  • Handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:220-228
    DOI: 10.1016/j.econmod.2013.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313003842
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Gang & Song, Haiyan & Witt, Stephen F., 2006. "Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 22(1), pages 57-71.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
    5. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    8. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanke, Peter & Barros, Carlos Pestana, 2016. "Efficiency drivers in Brazilian insurance: A two-stage DEA meta frontier-data mining approach," Economic Modelling, Elsevier, vol. 53(C), pages 8-22.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," AQR Working Papers 201802, University of Barcelona, Regional Quantitative Analysis Group, revised Apr 2018.
    3. Marisol Valencia Cárdenas & Juan Gabriel Vanegas López & Juan Carlos Correa Morales & Jorge Aníbal Restrepo Morales, 2017. "Comparing forecasts for tourism dynamics in Medellín, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 199-230, Enero - J.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    5. Kamel Jlassi, 2015. "Modelling and Forecasting of Tunisian Current Account: Aggregate versus Disaggregate Approach," IHEID Working Papers 13-2015, Economics Section, The Graduate Institute of International Studies.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2013. "“Tourism demand forecasting with different neural networks models”," AQR Working Papers 201313, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting"," IREA Working Papers 201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," AQR Working Papers 201802, University of Barcelona, Regional Quantitative Analysis Group, revised Apr 2018.
    9. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    10. Chen, Fu-Hsiang & Chi, Der-Jang & Wang, Yi-Cheng, 2015. "Detecting biotechnology industry's earnings management using Bayesian network, principal component analysis, back propagation neural network, and decision tree," Economic Modelling, Elsevier, vol. 46(C), pages 1-10.
    11. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Regional Forecasting with Support Vector Regressions: The Case of Spain”," IREA Working Papers 201507, University of Barcelona, Research Institute of Applied Economics, revised Jan 2015.
    12. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," AQR Working Papers 201410, University of Barcelona, Regional Quantitative Analysis Group, revised May 2014.
    13. Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
    14. repec:pal:buseco:v:53:y:2018:i:1:d:10.1057_s11369-017-0051-3 is not listed on IDEAS
    15. Valencia Cárdenas, Marisol & Vanegas López, Juan Gabriel & Correa Morales, Juan Carlos & Restrepo Morales, Jorge Aníbal, 2016. "Comparación de pronósticos para la dinámica del turismo en Medellín, Colombia," REVISTA LECTURAS DE ECONOMÍA, UNIVERSIDAD DE ANTIOQUIA - CIE, issue 86, pages 199-230, December.
    16. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    17. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    18. Dr. Murat çuhadar & Iclal Cogurcu & Ceyda Kukrer, 2014. "Modelling and Forecasting Cruise Tourism Demand to Izmir by Different Artificial Neural Network Architectures," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(3), pages 12-28, March.

    More about this item

    Keywords

    Forecasting; Time series models; Neural networks; Tourism demand; Catalonia;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:220-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.