IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A multivariate innovations state space Beveridge-Nelson decomposition

  • de Silva, Ashton
  • Hyndman, Rob J.
  • Snyder, Ralph

The Beveridge-Nelson vector innovations structural time series framework is a new formulation that decomposes a set of variables into their permanent and transitory components. The proposed framework is flexible, modelling inter-series relationships and common features in a simple manner. In particular, it is shown that this new specification is simpler than conventional state space and cointegration approaches. The approach is illustrated using a trivariate data set comprising the GDP of Australia, the USA and the UK.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 26 (2009)
Issue (Month): 5 (September)
Pages: 1067-1074

in new window

Handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:1067-1074
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Francisco Barillas & Christoph Schleicher, 2003. "Common Trends and Common Cycles in Canadian Sectoral Output," Staff Working Papers 03-44, Bank of Canada.
  2. Stock, James H & Watson, Mark W, 1988. "Variable Trends in Economic Time Series," Journal of Economic Perspectives, American Economic Association, vol. 2(3), pages 147-74, Summer.
  3. Charles Nelson & Eric Zivot, 2000. "Why are Beveridge-Nelson and Unobserved-Component Decompositions of GDP so Different?," Econometric Society World Congress 2000 Contributed Papers 0692, Econometric Society.
  4. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
  5. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-60, Oct.-Dec..
  6. Robert G. King & Charles I. Plosser & James H. Stock & Mark W. Watson, 1991. "Stochastic trends and economic fluctuations," Working Paper Series, Macroeconomic Issues 91-4, Federal Reserve Bank of Chicago.
  7. Tommaso PROIETTI, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Economics Working Papers ECO2002/23, European University Institute.
  8. Anderson, Heather M. & Low, Chin Nam & Snyder, Ralph, 2006. "Single source of error state space approach to the Beveridge Nelson decomposition," Economics Letters, Elsevier, vol. 91(1), pages 104-109, April.
  9. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-47, July-Sept.
  10. Morley, James C., 2002. "A state-space approach to calculating the Beveridge-Nelson decomposition," Economics Letters, Elsevier, vol. 75(1), pages 123-127, March.
  11. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
  12. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
  13. Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007. "The vector innovation structural time series framework: a simple approach to multivariate forecasting," Monash Econometrics and Business Statistics Working Papers 3/07, Monash University, Department of Econometrics and Business Statistics.
  14. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, December.
  15. Vahid, Farshid & Engle, Robert F., 1997. "Codependent cycles," Journal of Econometrics, Elsevier, vol. 80(2), pages 199-221, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:1067-1074. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.