Forecasting China bond default with severe class-imbalanced data: A simple learning model with causal inference
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econmod.2024.106985
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jin Zou & Shuxin Li & Zihan Xu & Guoying Deng, 2023. "Political uncertainty and bond defaults: evidence from the Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 29(9), pages 977-998, June.
- Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
- Edith Hotchkiss & Kose John & Bo Li & Jacopo Ponticelli & Wei Wang, 2023. "Default and Bankruptcy Resolution in China," Annual Review of Financial Economics, Annual Reviews, vol. 15(1), pages 369-385, November.
- Wang, Xiaoting & Hou, Siyuan & Shen, Jie, 2021. "Default clustering of the nonfinancial sector and systemic risk: Evidence from China," Economic Modelling, Elsevier, vol. 96(C), pages 196-208.
- Schweizer, Denis & Walker, Thomas & Zhang, Aoran, 2023. "False hopes and blind beliefs: How political connections affect China's corporate bond market," Journal of Banking & Finance, Elsevier, vol. 151(C).
- A. Adam Ding & Shaonan Tian & Yan Yu & Hui Guo, 2012. "A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 990-1003, September.
- He, Qing & Li, Xiaoyang, 2021. "The failure of Chinese peer-to-peer lending platforms: Finance and politics," Journal of Corporate Finance, Elsevier, vol. 66(C).
- Tang, Wenjin & Bu, Hui & Zuo, Yuan & Wu, Junjie, 2024. "Unlocking the power of the topic content in news headlines: BERTopic for predicting Chinese corporate bond defaults," Finance Research Letters, Elsevier, vol. 62(PA).
- Wang, Yuyue & Fang, Hongyan & Luo, Ronghua, 2022. "Does state ownership affect rating quality? Evidence from China's corporate bond market," Economic Modelling, Elsevier, vol. 111(C).
- Zoričák, Martin & Gnip, Peter & Drotár, Peter & Gazda, Vladimír, 2020. "Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets," Economic Modelling, Elsevier, vol. 84(C), pages 165-176.
- Sudheer Chava & Robert A. Jarrow, 2008.
"Bankruptcy Prediction with Industry Effects,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549,
World Scientific Publishing Co. Pte. Ltd..
- Sudheer Chava & Robert A. Jarrow, 2004. "Bankruptcy Prediction with Industry Effects," Review of Finance, European Finance Association, vol. 8(4), pages 537-569.
- Daniel Law & Mr. Shaun K. Roache, 2015. "Assessing Default Risks for Chinese Firms: A Lost Cause?," IMF Working Papers 2015/140, International Monetary Fund.
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Giraldo, Carlos & Giraldo, Iader & Gomez-Gonzalez, Jose E. & Uribe, Jorge M., 2024. "Financial integration and banking stability: A post-global crisis assessment," Economic Modelling, Elsevier, vol. 139(C).
- Michael Peng & Dongkai Jiang & Yingjie Wang, 2019. "Forecasting Chinese Corporate Bond Defaults: Comparative Study of Market- vs. Accounting-Based Models," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 14(4), pages 536-582, December.
- Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
- Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
- Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Koresh Galil & Neta Gilat, 2019.
"Predicting Default More Accurately: To Proxy or Not to Proxy for Default?,"
International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
- Neta Sher & Koresh Galil, 2015. "Predicting default more accurately: to proxy or not to proxy for default?," Working Papers 1505, Ben-Gurion University of the Negev, Department of Economics.
- Koresh Galil & Neta Gilat, 2018. "Predicting Default More Accurately: To Proxy Or Not To Proxy For Default," Working Papers 1801, Ben-Gurion University of the Negev, Department of Economics.
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023.
"Do decreases in Distance-to-Default predict rating downgrades?,"
Economic Modelling, Elsevier, vol. 129(C).
- Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Do decreases in Distance-to-Default predict rating downgrades?," Working Papers 14, xKDR.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
- Ampudia, Miguel & Busetto, Filippo & Fornari, Fabio, 2022. "Chronicle of a death foretold: does higher volatility anticipate corporate default?," Working Paper Series 2749, European Central Bank.
- John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
- Bai, Qing & Tian, Shaonan, 2020. "Innovate or die: Corporate innovation and bankruptcy forecasts," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 88-108.
- Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
- Michał Thor & Łukasz Postek, 2024. "Gated recurrent unit network: A promising approach to corporate default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1131-1152, August.
- Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
- Gila Burde, 2018. "Improved Methods for Predicting the Financial Vulnerability of Nonprofit Organizations," Administrative Sciences, MDPI, vol. 8(1), pages 1-8, February.
- Stef, Nicolae & Zenou, Emmanuel, 2021. "Management-to-staff ratio and a firm's exit," Journal of Business Research, Elsevier, vol. 125(C), pages 252-260.
- Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
- Ampudia, Miguel & Busetto, Filippo & Fornari, Fabio, 2022. "Chronicle of a death foretold: does higher volatility anticipate corporate default?," Bank of England working papers 1001, Bank of England.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
- Nigmonov, Asror & Shams, Syed & Urbonas, Povilas, 2024. "Estimating probability of default via delinquencies? Evidence from European P2P lending market," Global Finance Journal, Elsevier, vol. 63(C).
More about this item
Keywords
China bond market; Default predictions; Credit risk; Machine-learning; Class imbalance; Ensemble method; Causal inference; Model interpretability;All these keywords.
JEL classification:
- B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:144:y:2025:i:c:s0264999324003420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.