IDEAS home Printed from https://ideas.repec.org/a/eee/corfin/v94y2025ics0929119925000987.html

Machine Learning for the Unlisted: Enhancing MSME Default Prediction with Public Market Signals

Author

Listed:
  • Bitetto, Alessandro
  • Filomeni, Stefano
  • Modina, Michele

Abstract

This paper contributes to the growing body of research on private firms, particularly private firm accounting. We explore the economic factors that drive improvements in the default prediction of unlisted private firms using peers’ market-based information. Specifically, we examine how the market-based default probability of a peer firm can provide valuable insights into the often noisy accounting data of private firms. Our analysis delves deeply into these economic issues to uncover essential insights. To address our research question, we utilize a granular proprietary dataset of 10,136 Italian micro-, small-, and mid-sized enterprises (MSMEs) that are required to disclose their financial statements publicly. We propose a novel public–private firm mapping approach to investigate whether incorporating peers’ market-based information improves the accuracy of default predictions for private unlisted firms. Our mapping approach matches the market information of listed firms with private firms through a data-driven clustering technique using Neural Network Autoencoder. This method enables us to link the Merton Probability of Default (PD) of public peers to the corresponding private firms within the same cluster. We then apply five statistical techniques – linear models, multivariate adaptive regression splines, support vector machines, k-nearest neighbours and random forests – to predict corporate default among private firms, comparing model performance with and without the inclusion of Merton’s PD estimated using peers’ market-based information. To assess the contribution of each predictor, we employ Shapley values. Our results demonstrate a significant improvement in default prediction for unlisted private firms when incorporating peers’ market-based information, confirming that the noisy accounting data of private firms alone hinders accurate default prediction. Furthermore, our findings highlight the importance for banks to broaden the scope of information used in credit risk assessments of private firms. These results have important policy implications for financial institutions and policymakers, providing a tool to mitigate the challenges posed by the noisy information disclosure of MSMEs while ensuring more accurate credit risk assessments.

Suggested Citation

  • Bitetto, Alessandro & Filomeni, Stefano & Modina, Michele, 2025. "Machine Learning for the Unlisted: Enhancing MSME Default Prediction with Public Market Signals," Journal of Corporate Finance, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:corfin:v:94:y:2025:i:c:s0929119925000987
    DOI: 10.1016/j.jcorpfin.2025.102830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0929119925000987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcorpfin.2025.102830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03529325, HAL.
    2. Doumpos, Michael & Niklis, Dimitrios & Zopounidis, Constantin & Andriosopoulos, Kostas, 2015. "Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 599-607.
    3. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Working Papers 2019-056, Human Capital and Economic Opportunity Working Group.
    4. Stefano Filomeni & Gregory F. Udell & Alberto Zazzaro, 2021. "Hardening soft information: does organizational distance matter?," The European Journal of Finance, Taylor & Francis Journals, vol. 27(9), pages 897-927, June.
    5. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    6. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    7. Hernandez Tinoco, Mario & Holmes, Phil & Wilson, Nick, 2018. "Polytomous response financial distress models: The role of accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 276-289.
    8. Breden, David, 2008. "Monitoring the operational risk environment effectively," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 1(2), pages 156-164, March.
    9. Alford, Aw, 1992. "The Effect Of The Set Of Comparable Firms On The Accuracy Of The Price Earnings Valuation Method," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 30(1), pages 94-108.
    10. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    11. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    12. repec:bla:jfinan:v:53:y:1998:i:5:p:1443-1493 is not listed on IDEAS
    13. Das, Sanjiv R. & Hanouna, Paul & Sarin, Atulya, 2009. "Accounting-based versus market-based cross-sectional models of CDS spreads," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 719-730, April.
    14. Foglia, A. & Laviola, S. & Marullo Reedtz, P., 1998. "Multiple banking relationships and the fragility of corporate borrowers," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1441-1456, October.
    15. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    16. Lars Norden & Martin Weber, 2010. "Credit Line Usage, Checking Account Activity, and Default Risk of Bank Borrowers," The Review of Financial Studies, Society for Financial Studies, vol. 23(10), pages 3665-3699, October.
    17. Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
    18. Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "On the efficient synthesis of short financial time series: A Dynamic Factor Model approach," Finance Research Letters, Elsevier, vol. 53(C).
    19. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    20. Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
    21. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 12(1), pages 1-25.
    22. Christof Beuselinck & Ferdinand Elfers & Joachim Gassen & Jochen Pierk, 2023. "Private firm accounting: the European reporting environment, data and research perspectives," Accounting and Business Research, Taylor & Francis Journals, vol. 53(1), pages 38-82, January.
    23. Jun (Qj) Qian & Philip E. Strahan & Zhishu Yang, 2015. "The Impact of Incentives and Communication Costs on Information Production and Use: Evidence from Bank Lending," Journal of Finance, American Finance Association, vol. 70(4), pages 1457-1493, August.
    24. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    25. Peel, MJ & Peel, DA & Pope, PF, 1986. "Predicting corporate failure-- Some results for the UK corporate sector," Omega, Elsevier, vol. 14(1), pages 5-12.
    26. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 4, pages 71-111.
    27. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
    28. repec:bla:jfinan:v:59:y:2004:i:2:p:831-868 is not listed on IDEAS
    29. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    30. Olson, Luke M. & Qi, Min & Zhang, Xiaofei & Zhao, Xinlei, 2021. "Machine learning loss given default for corporate debt," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 144-159.
    31. Franco Fiordelisi & Stefano Monferrà & Gabriele Sampagnaro, 2014. "Relationship Lending and Credit Quality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(3), pages 295-315, December.
    32. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    33. Avramov, Doron & Li, Minwen & Wang, Hao, 2021. "Predicting corporate policies using downside risk: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 1-26.
    34. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    35. Stephen A. Hillegeist & Elizabeth K. Keating & Donald P. Cram & Kyle G. Lundstedt, 2004. "Assessing the Probability of Bankruptcy," Review of Accounting Studies, Springer, vol. 9(1), pages 5-34, March.
    36. Raffaella Calabrese & Giampiero Marra & Silvia Angela Osmetti, 2016. "Bankruptcy prediction of small and medium enterprises using a flexible binary generalized extreme value model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(4), pages 604-615, April.
    37. Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "Measuring financial soundness around the world: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 85(C).
    38. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    39. Alexander Kücher & Stefan Mayr & Christine Mitter & Christine Duller & Birgit Feldbauer-Durstmüller, 2020. "Firm age dynamics and causes of corporate bankruptcy: age dependent explanations for business failure," Review of Managerial Science, Springer, vol. 14(3), pages 633-661, June.
    40. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    41. Bhimani, Alnoor & Gulamhussen, Mohamed Azzim & Lopes, Samuel Da-Rocha, 2010. "Accounting and non-accounting determinants of default: An analysis of privately-held firms," Journal of Accounting and Public Policy, Elsevier, vol. 29(6), pages 517-532, November.
    42. Akbari, Amir & Ng, Lilian & Solnik, Bruno, 2021. "Drivers of economic and financial integration: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 82-102.
    43. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    44. Allen N. Berger & Gregory F. Udell, 2002. "Small Business Credit Availability and Relationship Lending: The Importance of Bank Organisational Structure," Economic Journal, Royal Economic Society, vol. 112(477), pages 32-53, February.
    45. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 18(1), pages 109-131.
    46. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    47. Richard Carter & Howard Van Auken, 2006. "Small Firm Bankruptcy," Journal of Small Business Management, Taylor & Francis Journals, vol. 44(4), pages 493-512, October.
    48. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    49. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    50. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 4, pages 123-127.
    51. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    52. Gropp, Reint & Guettler, Andre, 2018. "Hidden gems and borrowers with dirty little secrets: Investment in soft information, borrower self-selection and competition," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 26-39.
    53. Dierkes, Maik & Erner, Carsten & Langer, Thomas & Norden, Lars, 2013. "Business credit information sharing and default risk of private firms," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2867-2878.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    2. Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
    3. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    6. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    7. Weiyu Wang & Maria João Guedes, 2025. "Firm failure prediction for small and medium-sized enterprises and new ventures," Review of Managerial Science, Springer, vol. 19(7), pages 1949-1982, July.
    8. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    9. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    11. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    12. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    13. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
    14. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    15. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    16. Surbhi Bhatia & Manish K. Singh, 2022. "Fifty years since Altman (1968): Performance of financial distress prediction models," Working Papers 12, xKDR.
    17. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    18. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    19. Elsayed, Mohamed & Elshandidy, Tamer, 2020. "Do narrative-related disclosures predict corporate failure? Evidence from UK non-financial publicly quoted firms," International Review of Financial Analysis, Elsevier, vol. 71(C).
    20. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:corfin:v:94:y:2025:i:c:s0929119925000987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcorpfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.