IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v388y2025ics0306261925001746.html
   My bibliography  Save this article

Efficient mid-term forecasting of hourly electricity load using generalized additive models

Author

Listed:
  • Zimmermann, Monika
  • Ziel, Florian

Abstract

Accurate mid-term (weeks to one year) hourly electricity load forecasts are essential for strategic decision-making in power plant operation, ensuring supply security and grid stability, planning and building energy storage systems, and energy trading. While numerous models effectively predict short-term (hours to a few days) hourly load, mid-term forecasting solutions remain scarce. In mid-term load forecasting, capturing the multifaceted characteristics of load, including daily, weekly and annual seasonal patterns, as well as autoregressive effects, weather and holiday impacts, and socio-economic non-stationarities, presents significant modeling challenges. To address these challenges, we propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines that is enhanced with autoregressive post-processing. This model incorporates smoothed temperatures, Error-Trend-Seasonal (ETS) modeled and persistently forecasted non-stationary socio-economic states, a nuanced representation of effects from vacation periods, fixed date and weekday holidays, and seasonal information as inputs. The proposed model is evaluated using load data from 24 European countries over more than 9 years (2015-2024). This analysis demonstrates that the model not only has significantly enhanced forecasting accuracy compared to state-of-the-art methods but also offers valuable insights into the influence of individual components on predicted load, given its full interpretability. Achieving performance akin to day-ahead Transmission System Operator (TSO) forecasts, with computation times of just a few seconds for several years of hourly data, underscores the potential of the model for practical application in the power system industry.

Suggested Citation

  • Zimmermann, Monika & Ziel, Florian, 2025. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Applied Energy, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925001746
    DOI: 10.1016/j.apenergy.2025.125444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925001746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:388:y:2025:i:c:s0306261925001746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.