IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020506.html
   My bibliography  Save this article

Regionalized decision-supporting tool application for scenario analyses considering stakeholder interactions: A case study of the Groningen province in the northern Netherlands

Author

Listed:
  • Sahoo, Somadutta
  • Zuidema, Christian
  • van Stralen, Joost N.P.
  • Faaij, André

Abstract

Regionalized integrated energy system models considering stakeholder inputs are uncommon in the literature. This study tested and validated an existing quantitative optimization-based OPERA regional modeling framework. Stakeholder responses to surveys resulted in multiple future scenarios and sensitivities, applied to the Dutch province of Groningen energy transition. Stakeholder reflections in a workshop confirmed the potential of the model as a strategic decision-supporting tool. The tool successfully analyzed trade-offs, compromises, and complementarities regarding the different choices of stakeholders. The study reflected on the modest role of solar photovoltaics, which supplied 6.6–17.5 % of the primary energy, in comparison to policies and stakeholder assumptions. Biomass energy, at 18.2–28.5 %, was more prominent than expected. Similarly, choosing a scenario close to the current policy implied a strong dependency on imports, with net imports constituting 50 % of the energy supply. On the other hand, regional self-sufficiency implied spatial implications beyond stakeholder expectations. For example, land use associated with onshore wind energy was ∼13 % of the provincial land. The stakeholder interaction process highlighted capacity investments via other harmonized model linkages and the importance of the science-policy interfaces. Compared with contemporary models, the major advancements are spatial interfacing and the inclusion of land-use planning and policy constraints.

Suggested Citation

  • Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Faaij, André, 2025. "Regionalized decision-supporting tool application for scenario analyses considering stakeholder interactions: A case study of the Groningen province in the northern Netherlands," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020506
    DOI: 10.1016/j.apenergy.2024.124667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
    3. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    4. repec:hal:spmain:info:hdl:2441/11505qn4ak95irt0cafaeim81j is not listed on IDEAS
    5. Thomas Hoppe & Michiel Miedema, 2020. "A Governance Approach to Regional Energy Transition: Meaning, Conceptualization and Practice," Sustainability, MDPI, vol. 12(3), pages 1-28, January.
    6. Colbertaldo, Paolo & Guandalini, Giulio & Campanari, Stefano, 2018. "Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy," Energy, Elsevier, vol. 154(C), pages 592-601.
    7. Vo, D.H. & Tran, N.P. & Duong, T.N.-T. & McAleer, M.J., 2019. "Risk Analysis of Energy in Vietnam," Econometric Institute Research Papers EI2019-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. repec:spo:wpmain:info:hdl:2441/11505qn4ak95irt0cafaeim81j is not listed on IDEAS
    9. Hoang Anh Tran & Minh Ha-Duong, 2019. "A critical review of energy scenarios in Vietnam," Post-Print hal-04486774, HAL.
    10. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    11. González, Ainhoa & Connell, Peter, 2022. "Developing a renewable energy planning decision-support tool: Stakeholder input guiding strategic decisions," Applied Energy, Elsevier, vol. 312(C).
    12. Tania Ouariachi & Wim J. L. Elving & Frank Pierie, 2018. "Playing for a Sustainable Future: The Case of We Energy Game as an Educational Practice," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    13. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    14. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    15. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    16. Sarker Swati Anindita & Wang Shouyang & Adnan K M Mehedi, 2019. "Energy Consumption and Economic Growth Nexus in Bangladesh," Journal of Systems Science and Information, De Gruyter, vol. 7(6), pages 497-509, December.
    17. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Decision support for strategic energy planning: A robust optimization framework," European Journal of Operational Research, Elsevier, vol. 280(2), pages 539-554.
    18. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    19. Aitken, Mhairi, 2010. "Wind power and community benefits: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(10), pages 6066-6075, October.
    20. Tulio A S Vieira & Paulo F Trugilho & Tulio A S Vieira & Sonia A C Carabineiro & Paulo F Trugilho, 2019. "Forestry Biomass as Energy Source in Brazil," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(3), pages 75-79, May.
    21. Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    22. Radoslaw Wisniewski & Piotr Daniluk & Tomasz Kownacki & Aneta Nowakowska-Krystman, 2022. "Energy System Development Scenarios: Case of Poland," Energies, MDPI, vol. 15(8), pages 1-31, April.
    23. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    24. Yushchenko, Alisa & Patel, Martin Kumar, 2017. "Cost-effectiveness of energy efficiency programs: How to better understand and improve from multiple stakeholder perspectives?," Energy Policy, Elsevier, vol. 108(C), pages 538-550.
    25. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    26. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    27. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    28. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    29. Biying Yu & Guangpu Zhao & Runying An, 2019. "Framing the picture of energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1469-1490, December.
    30. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    31. Sahoo, Somadutta & van Stralen, Joost N.P. & Zuidema, Christian & Sijm, Jos & Yamu, Claudia & Faaij, André, 2022. "Regionalization of a national integrated energy system model: A case study of the northern Netherlands," Applied Energy, Elsevier, vol. 306(PB).
    32. Dodds, Paul E. & McDowall, Will, 2013. "The future of the UK gas network," Energy Policy, Elsevier, vol. 60(C), pages 305-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. O'Sullivan, Kate & Golubchikov, Oleg & Mehmood, Abid, 2020. "Uneven energy transitions: Understanding continued energy peripheralization in rural communities," Energy Policy, Elsevier, vol. 138(C).
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Jenkins, Lekelia Danielle & Dreyer, Stacia Jeanne & Polis, Hilary Jacqueline & Beaver, Ezra & Kowalski, Adam A. & Linder, Hannah L. & McMillin, Thomas Neal & McTiernan, Kaylie Laura & Rogier, Thea The, 2018. "Human dimensions of tidal energy: A review of theories and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 323-337.
    6. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    7. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    8. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    9. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    11. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    14. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    15. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    16. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    17. Petrova, Maria A., 2016. "From NIMBY to acceptance: Toward a novel framework — VESPA — For organizing and interpreting community concerns," Renewable Energy, Elsevier, vol. 86(C), pages 1280-1294.
    18. Sigurd Hilmo Lundheim & Giuseppe Pellegrini-Masini & Christian A. Klöckner & Stefan Geiss, 2022. "Developing a Theoretical Framework to Explain the Social Acceptability of Wind Energy," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    20. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.