IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1209-d504422.html
   My bibliography  Save this article

Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning

Author

Listed:
  • Ioannis Pappis

    (Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvagen 68, 10044 Stockholm, Sweden)

  • Andreas Sahlberg

    (Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvagen 68, 10044 Stockholm, Sweden)

  • Tewodros Walle

    (Energy Center, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia)

  • Oliver Broad

    (UCL Energy Institute, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

  • Elusiyan Eludoyin

    (UCL Energy Institute, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

  • Mark Howells

    (Department of Geography, Loughborough University, Loughborough LE11 3TT, UK
    Center for Environmental Policy, Imperial College London, London SW7 2BU, UK)

  • Will Usher

    (Division of Energy Systems, Department of Energy Technology, KTH Royal Institute of Technology, Brinellvagen 68, 10044 Stockholm, Sweden)

Abstract

Ethiopia is a low-income country, with low electricity access (45%) and an inefficient power transmission network. The government aims to achieve universal access and become an electricity exporter in the region by 2025. This study provides an invaluable perspective on different aspects of Ethiopia’s energy transition, focusing on achieving universal access and covering the country’s electricity needs during 2015–2065. We co-developed and investigated three scenarios to examine the policy and technology levels available to the government to meet their national priorities. To conduct this analysis, we soft-linked OnSSET, a modelling tool used for geospatial analysis, with OSeMOSYS, a cost-optimization modelling tool used for medium to long-run energy planning. Our results show that the country needs to diversify its power generation system to achieve universal access and cover its future electricity needs by increasing its overall carbon dioxide emissions and fully exploit hydropower. With the aim of achieving universal access by 2025, the newly electrified population is supplied primarily by the grid (65%), followed by stand-alone (32%) technologies. Similarly, until 2065, most of the electrified people by 2025 will continue to be grid-connected (99%). The country’s exports will increase to 17 TWh by 2065, up from 832 GWh in 2015, leading to a cumulative rise in electricity export revenues of 184 billion USD.

Suggested Citation

  • Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1209-:d:504422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guta, Dawit Diriba & Börner, Jan, 2015. "Energy security, uncertainty, and energy resource use option in Ethiopia: A sector modelling approach," Discussion Papers 207697, University of Bonn, Center for Development Research (ZEF).
    2. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.
    3. Nijkamp, Peter, 1980. "Energy problems and regional development : Editorial note," Regional Science and Urban Economics, Elsevier, vol. 10(3), pages 299-301, August.
    4. Paul Block & Kenneth Strzepek, 2012. "Power Ahead: Meeting Ethiopia's Energy Needs Under a Changing Climate," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 476-488, August.
    5. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    6. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    7. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    8. Demissie, Ashenafi A. & Solomon, A.A., 2016. "Power system sensitivity to extreme hydrological conditions as studied using an integrated reservoir and power system dispatch model, the case of Ethiopia," Applied Energy, Elsevier, vol. 182(C), pages 442-463.
    9. Menghwani, Vikas & Zerriffi, Hisham & Korkovelos, Alexandros & Khavari, Babak & Sahlberg, Andreas & Howells, Mark & Mentis, Dimitris, 2020. "Planning with justice: Using spatial modelling to incorporate justice in electricity pricing – The case of Tanzania," Applied Energy, Elsevier, vol. 264(C).
    10. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    11. Sherman Robinson & Dirk Willenbockel & Kenneth Strzepek, 2012. "A Dynamic General Equilibrium Analysis of Adaptation to Climate Change in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 489-502, August.
    12. Mulugetta, Yacob, 2008. "Human capacity and institutional development towards a sustainable energy future in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1435-1450, June.
    13. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    14. Luiz Maurer & Carmen Nonay, 2009. "Output-Based Aid in Ethiopia : Dealing with the 'Last Mile' Paradox in Rural Electrification," World Bank Publications - Reports 10981, The World Bank Group.
    15. Alexandros Korkovelos & Babak Khavari & Andreas Sahlberg & Mark Howells & Christopher Arderne, 2019. "The Role of Open Access Data in Geospatial Electrification Planning and the Achievement of SDG7. An OnSSET-Based Case Study for Malawi," Energies, MDPI, vol. 12(7), pages 1-36, April.
    16. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    17. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    18. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    19. de Moura, Gustavo Nikolaus Pinto & Legey, Luiz Fernando Loureiro & Howells, Mark, 2018. "A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: A cooperative games approach," Energy Policy, Elsevier, vol. 115(C), pages 470-485.
    20. Alexandros Korkovelos & Hisham Zerriffi & Mark Howells & Morgan Bazilian & H-Holger Rogner & Francesco Fuso Nerini, 2020. "A Retrospective Analysis of Energy Access with a Focus on the Role of Mini-Grids," Sustainability, MDPI, vol. 12(5), pages 1-29, February.
    21. Limmeechokchai, Bundit & Chawana, Saichit, 2007. "Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 818-837, June.
    22. Gonzalez Sanchez, Rocio & Seliger, Roman & Fahl, Fernando & De Felice, Luca & Ouarda, Taha B.M.J. & Farinosi, Fabio, 2020. "Freshwater use of the energy sector in Africa," Applied Energy, Elsevier, vol. 270(C).
    23. Stefan Pfenninger, 2017. "Energy scientists must show their workings," Nature, Nature, vol. 542(7642), pages 393-393, February.
    24. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    25. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    26. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    27. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    28. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    29. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    30. Reddy, B. Sudhakara, 2015. "Access to modern energy services: An economic and policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 198-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Sahlberg & Babak Khavari & Ismail Mohamed & Francesco Fuso Nerini, 2023. "Comparison of Least-Cost Pathways towards Universal Electricity Access in Somalia over Different Timelines," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Jacob Dalder & Gbemi Oluleye & Carla Cannone & Rudolf Yeganyan & Naomi Tan & Mark Howells, 2024. "Modelling Policy Pathways to Maximise Renewable Energy Growth and Investment in the Democratic Republic of the Congo Using OSeMOSYS (Open Source Energy Modelling System)," Energies, MDPI, vol. 17(2), pages 1-27, January.
    3. Hassen, Sied & Beyene, Abebe D. & Jeuland, Marc & Mekonnen, Alemu & Meles, Tensay Hadush & Sebsibie, Samuel & Klug, Thomas & Pattanayak, Subhrendu K. & Toman, Michael A., 2022. "Effect of electricity price reform on households’ electricity consumption in urban Ethiopia," Utilities Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghwani, Vikas & Zerriffi, Hisham & Korkovelos, Alexandros & Khavari, Babak & Sahlberg, Andreas & Howells, Mark & Mentis, Dimitris, 2020. "Planning with justice: Using spatial modelling to incorporate justice in electricity pricing – The case of Tanzania," Applied Energy, Elsevier, vol. 264(C).
    2. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    3. Andreas Sahlberg & Babak Khavari & Ismail Mohamed & Francesco Fuso Nerini, 2023. "Comparison of Least-Cost Pathways towards Universal Electricity Access in Somalia over Different Timelines," Energies, MDPI, vol. 16(18), pages 1-20, September.
    4. Stephen J. Ramos & Umit Yilmaz, 2023. "Energy transition and city–port symbiosis in biomass import–export regions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(2), pages 406-428, June.
    5. Ciller, Pedro & Lumbreras, Sara, 2020. "Electricity for all: The contribution of large-scale planning tools to the energy-access problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Alexandros Korkovelos & Hisham Zerriffi & Mark Howells & Morgan Bazilian & H-Holger Rogner & Francesco Fuso Nerini, 2020. "A Retrospective Analysis of Energy Access with a Focus on the Role of Mini-Grids," Sustainability, MDPI, vol. 12(5), pages 1-29, February.
    7. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    9. Setu Pelz & Shonali Pachauri & Sebastian Groh, 2018. "A critical review of modern approaches for multidimensional energy poverty measurement," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    10. Hoicka, Christina E. & Conroy, Jessica & Berka, Anna L., 2021. "Reconfiguring actors and infrastructure in city renewable energy transitions: A regional perspective," Energy Policy, Elsevier, vol. 158(C).
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    13. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    14. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    15. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    16. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    17. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    18. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    19. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2022. "Resource Conservation as the Main Factor in Increasing the Resource Efficiency of Russian Gas Companies," Resources, MDPI, vol. 11(12), pages 1-14, December.
    20. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1209-:d:504422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.