IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v337y2023ics0306261923002866.html
   My bibliography  Save this article

The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target

Author

Listed:
  • Wang, Yihan
  • Wen, Zongguo
  • Lv, Xiaojun
  • Zhu, Junming

Abstract

China’s thermal power sector accounted for 45 % of total carbon emissions. Significant regional discrepancies exist between the plants to reach the carbon peaking target, which was overlooked in current research. This study investigates the regional discrepancies of the thermal power plants towards the carbon peaking target firstly. A thermal power plant database with ∼ 4500 power units in 298 cities to evaluate the emission reduction potential, expected carbon peaking period, and co-benefits. Results show that the carbon emission of the sector will experience a 7.2 % rise between 2019 and 2035, but the emission intensity decline by 27.6 g CO2/kWh. Nearly-one-third of the cities have risks not reaching the carbon peaking target before 2030, while most cities can reduce air pollutant emission. This study reveals the inconsistency between spatial carbon emissions and reduction potential of the thermal power plants and proposes several policy suggestions to the whole sector’s decarbonization.

Suggested Citation

  • Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
  • Handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002866
    DOI: 10.1016/j.apenergy.2023.120922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923002866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    3. Chen, Zhenling & Zhao, Weigang & Zheng, Heyun, 2021. "Potential output gap in China's regional coal-fired power sector under the constraint of carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    4. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    5. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    6. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Kelly Sims Gallagher & Fang Zhang & Robbie Orvis & Jeffrey Rissman & Qiang Liu, 2019. "Assessing the Policy gaps for achieving China’s climate targets in the Paris Agreement," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    8. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
    9. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    10. Yang Guo & Jinping Tian & Lyujun Chen, 2020. "Managing energy infrastructure to decarbonize industrial parks in China," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. Ling Tang & Jiabao Qu & Zhifu Mi & Xin Bo & Xiangyu Chang & Laura Diaz Anadon & Shouyang Wang & Xiaoda Xue & Shibei Li & Xin Wang & Xiaohong Zhao, 2019. "Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards," Nature Energy, Nature, vol. 4(11), pages 929-938, November.
    12. Mou, Dunguo, 2014. "Understanding China’s electricity market reform from the perspective of the coal-fired power disparity," Energy Policy, Elsevier, vol. 74(C), pages 224-234.
    13. Shinichiro Fujimori & Ken Oshiro & Hiroto Shiraki & Tomoko Hasegawa, 2019. "Energy transformation cost for the Japanese mid-century strategy," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    14. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    15. Wei Peng & Fabian Wagner & M. V. Ramana & Haibo Zhai & Mitchell J. Small & Carole Dalin & Xin Zhang & Denise L. Mauzerall, 2018. "Managing China’s coal power plants to address multiple environmental objectives," Nature Sustainability, Nature, vol. 1(11), pages 693-701, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yihan & Zhang, Lanxin & Wen, Zongguo & Chen, Chen & Cao, Xin & Doh Dinga, Christian, 2023. "Optimization of the sustainable production pathways under multiple industries and objectives: A study of China's three energy- and emission-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    3. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    4. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
    6. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).
    7. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
    8. Chen Chris Gong & Falko Ueckerdt & Christoph Bertram & Yuxin Yin & David Bantje & Robert Pietzcker & Johanna Hoppe & Michaja Pehl & Gunnar Luderer, 2023. "Robust CO2-abatement from early end-use electrification under uncertain power transition speed in China's netzero transition," Papers 2312.04332, arXiv.org.
    9. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    11. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    12. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    13. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    14. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    15. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    16. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    17. Meng, Ming & Mander, Sarah & Zhao, Xiaoli & Niu, Dongxiao, 2016. "Have market-oriented reforms improved the electricity generation efficiency of China's thermal power industry? An empirical analysis," Energy, Elsevier, vol. 114(C), pages 734-741.
    18. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    19. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    20. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.