IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002925.html
   My bibliography  Save this article

Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction

Author

Listed:
  • Yin, Linfei
  • Zhou, Hang

Abstract

Overheating of reheater tubes in ultra-supercritical coal-fired power plants can affect the efficiency and safety of power generation (PG). To avoid reheater tubes overheating and bursting, this study proposes a modal decomposition integrated model (MDIM) for multi-step prediction of the reheater tube temperature to help managers adopt appropriate measures based on the predicted temperature changes. Considering the non-smooth and non-linear nature of the original temperature data, this study applies complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the temperature data to remove noise and extract non-linear features effectively. In this study, the residual network18-convolutional block attention module (ResNet18-CBAM), transformer, gate recurrent unit (GRU), and temporal convolutional network (TCN) are applied to predict each component with different degrees of complexity after decomposition. The results of each component are integrated by the multilayer perceptron (MLP). The proposed MDIM is evaluated with various metrics. For single-step prediction, mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) are 0.037, 0.0062, and 0.066, respectively. In the case of 48-step prediction, the corresponding values are 1.97, 0.33, and 2.4. Therefore, the proposed MDIM achieves outstanding results in both single-step and multi-step prediction.

Suggested Citation

  • Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002925
    DOI: 10.1016/j.energy.2024.130521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.