IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225005882.html
   My bibliography  Save this article

Phase lead error-based active disturbance rejection control for 1000 MW ultra-supercritical unit under flexible operation

Author

Listed:
  • Pang, Dawei
  • Niu, Yuguang
  • Du, Ming

Abstract

For increased renewable energy consumption and enhanced flexible operation of the ultra-supercritical unit (USC), a phase lead error-based active disturbance rejection control (PL-EADRC) combined with static decoupling is proposed. First, the control difficulties of the USC unit under flexible operation are analyzed. Then, the total disturbance observation ability of conventional error-based ADRC (EADRC) is improved by designing the phase lead. Stability and frequency domain analyses are performed subsequently. Simulation results revealed that the tracking and disturbance rejection performances of PL-EADRC, under full operating conditions, improved significantly over each loop compared to the conventional EADRC and proportional–integral–derivative (PID). Based on the observed advantages, the proposed PL-EADRC strategy is expected to have broad industrial application prospects.

Suggested Citation

  • Pang, Dawei & Niu, Yuguang & Du, Ming, 2025. "Phase lead error-based active disturbance rejection control for 1000 MW ultra-supercritical unit under flexible operation," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005882
    DOI: 10.1016/j.energy.2025.134946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    2. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    3. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    4. Rinne, S. & Syri, S., 2015. "The possibilities of combined heat and power production balancing large amounts of wind power in Finland," Energy, Elsevier, vol. 82(C), pages 1034-1046.
    5. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
    6. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    7. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    8. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    9. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    10. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    11. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    12. Xu, Jinliang & Liu, Chao & Sun, Enhui & Xie, Jian & Li, Mingjia & Yang, Yongping & Liu, Jizhen, 2019. "Perspective of S−CO2 power cycles," Energy, Elsevier, vol. 186(C).
    13. Sun, Li & Hua, Qingsong & Shen, Jiong & Xue, Yali & Li, Donghai & Lee, Kwang Y., 2017. "Multi-objective optimization for advanced superheater steam temperature control in a 300MW power plant," Applied Energy, Elsevier, vol. 208(C), pages 592-606.
    14. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    15. Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
    16. Ting He & Zhenlong Wu & Rongqi Shi & Donghai Li & Li Sun & Lingmei Wang & Song Zheng, 2019. "Maximum Sensitivity-Constrained Data-Driven Active Disturbance Rejection Control with Application to Airflow Control in Power Plant," Energies, MDPI, vol. 12(2), pages 1-23, January.
    17. Wang, Wei & Jing, Sitong & Sun, Yang & Liu, Jizhen & Niu, Yuguang & Zeng, Deliang & Cui, Can, 2019. "Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation," Energy, Elsevier, vol. 169(C), pages 988-999.
    18. Nowak, Grzegorz & Rusin, Andrzej & Łukowicz, Henryk & Tomala, Martyna, 2020. "Improving the power unit operation flexibility by the turbine start-up optimization," Energy, Elsevier, vol. 198(C).
    19. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    20. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    21. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    22. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    23. Hou, Guolian & Gong, Linjuan & Hu, Bo & Huang, Ting & Su, Huilin & Huang, Congzhi & Zhou, Guiping & Wang, Shunjiang, 2022. "Flexibility oriented adaptive modeling of combined heat and power plant under various heat-power coupling conditions," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Hou, Guolian & Ye, Lingling & Huang, Ting & Huang, Congzhi, 2024. "Intelligent modeling of combined heat and power unit under full operating conditions via improved crossformer and precise sparrow search algorithm," Energy, Elsevier, vol. 308(C).
    3. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    4. Wang, Congyu & Chen, Fangfang & Xu, Pengjiang & Cao, Hongmei & Wang, Wei & Sun, Qie, 2025. "Dynamic simulation of a subcritical coal-fired power plant with the emphasis on flexibility," Applied Energy, Elsevier, vol. 392(C).
    5. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    6. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    7. Zhu, Hengyi & Tan, Peng & He, Ziqian & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2022. "Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network," Energy, Elsevier, vol. 255(C).
    8. Liu, Zefeng & Wang, Chaoyang & Fan, Mengyang & Wang, Zhu & Fang, Fang & Liu, Ming & Yan, Junjie, 2025. "Investigation on the allowable load ramping-up rate and wet-to-dry conversion time of a 660 MW supercritical coal-fired power plant with deep peak-shaving work conditions," Energy, Elsevier, vol. 314(C).
    9. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    10. Hou, Guolian & Huang, Ting & Jiang, Hao & Cao, Huan & Zhang, Tianhao & Zhang, Jianhua & Gao, He & Liu, Yong & Zhou, Zhenhua & An, Zhenyi, 2024. "A flexible and deep peak shaving scheme for combined heat and power plant under full operating conditions," Energy, Elsevier, vol. 299(C).
    11. Hou, Guolian & Fan, Yuzhen & Wang, Junjie, 2024. "Application of a novel dynamic recurrent fuzzy neural network with rule self-adaptation based on chaotic quantum pigeon-inspired optimization in modeling for gas turbine," Energy, Elsevier, vol. 290(C).
    12. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    13. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
    14. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    15. Hou, Guolian & Gong, Linjuan & Hu, Bo & Huang, Ting & Su, Huilin & Huang, Congzhi & Zhou, Guiping & Wang, Shunjiang, 2022. "Flexibility oriented adaptive modeling of combined heat and power plant under various heat-power coupling conditions," Energy, Elsevier, vol. 242(C).
    16. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    17. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    18. Jiakui Shi & Shuangshuang Fan & Jiajia Li & Jiangnan Cheng & Jie Wan & Peng E, 2023. "An Optimization Method of Steam Turbine Load Resilient Adjustment by Characterizing Dynamic Changes in Superheated Steam Energy," Energies, MDPI, vol. 16(8), pages 1-15, April.
    19. Xie, Yan & Liu, Ji-zhen & Zeng, De-liang & Hu, Yong & Li, Rui-lian & Zhu, Yan-song, 2024. "A dynamic hybrid model of supercritical once-through boiler-turbine unit including recirculation mode and once-through mode," Energy, Elsevier, vol. 309(C).
    20. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.