IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311166.html
   My bibliography  Save this article

Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm

Author

Listed:
  • Huang, Congzhi
  • Sheng, Xinxin

Abstract

Ultra-supercritical units with high steam temperature and pressure have been widely employed in thermal power plants due to their high efficiency and environmental friendliness. To ensure efficient unit operation, it is necessary to develop a model for the boiler-turbine coupled process of the unit. The present models may be complicated or non-transparent, preventing their practical application. In this work, the model structure is a transfer function matrix by dynamic analysis, and the model parameters are obtained by the proposed data-driven multivariable model parameters intelligent identification scheme with the cloud adaptive chaotic bird swarm algorithm combining sheep optimization and lion swarm optimization. By employing operational data from 1000 MW ultra-supercritical unit, extensive experimental results were given to show that the model identified was reasonable and accurate by comparison tests between identification outputs and process outputs around 800 MW operation condition. The developed model can provide reference for further control strategy synthesis and performance optimization.

Suggested Citation

  • Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311166
    DOI: 10.1016/j.energy.2020.118009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sreepradha, Chandrasekharan & Panda, Rames Chandra & Bhuvaneswari, Natrajan Swaminathan, 2017. "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, Elsevier, vol. 118(C), pages 985-998.
    2. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    3. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    4. Wang, Di & Zhou, Yunlong & Li, Xiaoli, 2018. "A dynamic model used for controller design for fast cut back of coal-fired boiler-turbine plant," Energy, Elsevier, vol. 144(C), pages 526-534.
    5. Xiao Wu & Jiong Shen & Yiguo Li & Kwang Y. Lee, 2015. "Steam power plant configuration, design, and control," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 537-563, November.
    6. Long, Dongteng & Wang, Wei & Yao, Chu & Liu, Jizhen, 2017. "An experiment-based model of condensate throttling and its utilization in load control of 1000 MW power units," Energy, Elsevier, vol. 133(C), pages 941-954.
    7. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    8. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    9. Liu, Ji-Zhen & Yan, Shu & Zeng, De-Liang & Hu, Yong & Lv, You, 2015. "A dynamic model used for controller design of a coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 93(P2), pages 2069-2078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    3. Jiakui Shi & Shuangshuang Fan & Jiajia Li & Jiangnan Cheng & Jie Wan & Peng E, 2023. "An Optimization Method of Steam Turbine Load Resilient Adjustment by Characterizing Dynamic Changes in Superheated Steam Energy," Energies, MDPI, vol. 16(8), pages 1-15, April.
    4. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    5. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    6. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    7. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    8. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    9. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    10. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    11. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    2. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    3. Jiakui Shi & Shuangshuang Fan & Jiajia Li & Jiangnan Cheng & Jie Wan & Peng E, 2023. "An Optimization Method of Steam Turbine Load Resilient Adjustment by Characterizing Dynamic Changes in Superheated Steam Energy," Energies, MDPI, vol. 16(8), pages 1-15, April.
    4. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    5. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    6. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    7. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    8. Chen Chen & Lei Pan & Shanjian Liu & Li Sun & Kwang Y. Lee, 2018. "A Sustainable Power Plant Control Strategy Based on Fuzzy Extended State Observer and Predictive Control," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    9. Wu, Xiao & Wang, Meihong & Shen, Jiong & Li, Yiguo & Lawal, Adekola & Lee, Kwang Y., 2019. "Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls," Applied Energy, Elsevier, vol. 238(C), pages 495-515.
    10. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    11. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    12. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    13. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    14. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    15. Hao Zhang & Xiangjie Liu & Xiaobing Kong & Kwang Y. Lee, 2019. "Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System," Energies, MDPI, vol. 12(21), pages 1-14, October.
    16. Hongxia Zhu & Gang Zhao & Li Sun & Kwang Y. Lee, 2019. "Nonlinear Predictive Control for a Boiler–Turbine Unit Based on a Local Model Network and Immune Genetic Algorithm," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    17. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    18. Han, Zhonghe & Xiang, Peng, 2020. "Modeling condensate throttling to improve the load change performance of cogeneration units," Energy, Elsevier, vol. 192(C).
    19. Zhu, Hengyi & Tan, Peng & He, Ziqian & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2022. "Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network," Energy, Elsevier, vol. 255(C).
    20. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.