IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014791.html
   My bibliography  Save this article

Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network

Author

Listed:
  • Hou, Guolian
  • Xiong, Jian
  • Zhou, Guiping
  • Gong, Linjuan
  • Huang, Congzhi
  • Wang, Shunjiang

Abstract

The coordinated control systems (CCS) in ultra-supercritical thermal power unit, like many other industrial systems, is a complex multivariable system with severe nonlinearity, strong multivariable coupling and uncertainties. In order to meet the requirements of operational stability, economy. etc in ultra-supercritical unit, it is necessary to establish its accurate mathematical model and further design the advanced controller. Against this background, a new fuzzy neural network modeling method is proposed in this paper. First of all, the incremental model is considered separately to improve the rationality of the local linear model structure. Then, the parameters in antecedent part is initialized by a kernel k-means++ algorithm, in which Xie-Beni index is used to optimize the number of fuzzy rules. Finally, supervised adaptive gradient descent algorithm and artificial immune particle swarm optimization algorithm work in stages to complete the training of the consequent part parameters. The proposed modeling method in this paper is applied to a 1000 MW unit in China and shows satisfactory accuracy. In the established model, the MSE of power output, main steam pressure and separator outlet steam temperature are 0.0099, 1.21E-4, 0.0023, respectively. Both numerical and graphical simulation results confirm the effectiveness of the presented fuzzy neural network in modeling.

Suggested Citation

  • Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014791
    DOI: 10.1016/j.energy.2021.121231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    2. Xu, Jing & Bi, Dapeng & Ma, Suxia & Bai, Jin, 2020. "A data-based approach for benchmark interval determination with varying operating conditions in the coal-fired power unit," Energy, Elsevier, vol. 211(C).
    3. Nawaz, Zanib & Ali, Usman, 2020. "Techno-economic evaluation of different operating scenarios for indigenous and imported coal blends and biomass co-firing on supercritical coal fired power plant performance," Energy, Elsevier, vol. 212(C).
    4. Han, Yu & Sun, Yingying, 2020. "Collaborative optimization of energy conversion and NOx removal in boiler cold-end of coal-fired power plants based on waste heat recovery of flue gas and sensible heat utilization of extraction steam," Energy, Elsevier, vol. 207(C).
    5. Safaei, Mohammad Reza & Hajizadeh, Ahmad & Afrand, Masoud & Qi, Cong & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 209-216.
    6. Sun, Yang & Wang, Ligang & Xu, Cheng & Van herle, Jan & Maréchal, François & Yang, Yongping, 2020. "Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas," Applied Energy, Elsevier, vol. 263(C).
    7. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    8. Wu, Xiao & Shen, Jiong & Wang, Meihong & Lee, Kwang Y., 2020. "Intelligent predictive control of large-scale solvent-based CO2 capture plant using artificial neural network and particle swarm optimization," Energy, Elsevier, vol. 196(C).
    9. Gu, Hui & Cui, Yanfeng & Zhu, Hongxia & Xue, Rui & Si, Fengqi, 2018. "A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring," Energy, Elsevier, vol. 148(C), pages 789-801.
    10. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    11. Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
    12. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    13. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    14. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Linna & Chen, Chuqi & Chen, Lekang & Li, Zheng & Zeng, Wenjie, 2023. "A coordinated control methodology for small pressurized water reactor with steam dump control system," Energy, Elsevier, vol. 282(C).
    2. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    3. Zhu, Hengyi & Tan, Peng & He, Ziqian & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2022. "Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network," Energy, Elsevier, vol. 255(C).
    4. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    5. Hou, Guolian & Gong, Linjuan & Hu, Bo & Huang, Ting & Su, Huilin & Huang, Congzhi & Zhou, Guiping & Wang, Shunjiang, 2022. "Flexibility oriented adaptive modeling of combined heat and power plant under various heat-power coupling conditions," Energy, Elsevier, vol. 242(C).
    6. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    7. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    8. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
    9. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    10. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Setiawan & Reza Daneshfar & Omid Rezvanjou & Siavash Ashoori & Maryam Naseri, 2021. "Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17606-17627, December.
    2. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    3. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    4. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    6. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    7. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Zhang, Yi & Liu, Jinfeng & Yang, Tingting & Liu, Jianbang & Shen, Jiong & Fang, Fang, 2021. "Dynamic modeling and control of direct air-cooling condenser pressure considering couplings with adjacent systems," Energy, Elsevier, vol. 236(C).
    9. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    10. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    11. Si, Tong & Wang, Chunbo & Liu, Ruiqi & Guo, Yusheng & Yue, Shuang & Ren, Yujie, 2020. "Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units," Energy, Elsevier, vol. 200(C).
    12. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    13. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    14. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    15. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    16. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    17. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).
    18. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    19. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    20. Yadav, Sujeet & Yu, Panlong & Tanno, Kenji & Watanabe, Hiroaki, 2023. "Large eddy simulation of coal-ammonia flames with varied ammonia injection locations using a flamelet-based approach," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.