IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v519y2019icp209-216.html
   My bibliography  Save this article

Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data

Author

Listed:
  • Safaei, Mohammad Reza
  • Hajizadeh, Ahmad
  • Afrand, Masoud
  • Qi, Cong
  • Yarmand, Hooman
  • Zulkifli, Nurin Wahidah Binti Mohd

Abstract

In this paper, the experimental data on the thermal conductivity of EG based hybrid nanofluid containing zinc oxide and titanium oxide have been used. At the first, three two-variable correlations have been proposed using curve-fitting on experimental data. After that, the best transfer function for training the artificial neural network has been selected. The input variables of neural network were temperature and solid volume fraction, while the output variable was the thermal conductivity enhancement of the nanofluid. Moreover, the correlation outputs, ANN results and experimental data have been compared. The results showed that there is a good agreement between experimental data and neural network results so that the resulting model of the neural network is able to predict the thermal conductivity enhancement of the nanofluid. The findings also indicated that the accuracy of the neural network is much greater than the curve fitting method to predict thermal conductivity enhancement of ZnO-TiO2/EG hybrid nanofluid.

Suggested Citation

  • Safaei, Mohammad Reza & Hajizadeh, Ahmad & Afrand, Masoud & Qi, Cong & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 209-216.
  • Handle: RePEc:eee:phsmap:v:519:y:2019:i:c:p:209-216
    DOI: 10.1016/j.physa.2018.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118315152
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghasemi, Ali & Hassani, Mohsen & Goodarzi, Marjan & Afrand, Masoud & Manafi, Sahebali, 2019. "Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 36-45.
    2. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    3. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    4. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    2. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Ghazvini, Mahyar & Maddah, Heydar & Peymanfar, Reza & Ahmadi, Mohammad Hossein & Kumar, Ravinder, 2020. "Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    6. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    7. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    8. Roy Setiawan & Reza Daneshfar & Omid Rezvanjou & Siavash Ashoori & Maryam Naseri, 2021. "Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17606-17627, December.
    9. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Ali Hassan & Qusain Haider & Najah Alsubaie & Fahad M. Alharbi & Abdullah Alhushaybari & Ahmed M. Galal, 2022. "Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    11. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "On extended version of Yamada–Ota and Xue models in micropolar fluid flow under the region of stagnation point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    12. Wu, Huawei & Al-Rashed, Abdullah A.A.A. & Barzinjy, Azeez A. & Shahsavar, Amin & Karimi, Ali & Talebizadehsardari, Pouyan, 2019. "Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
    3. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    6. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    7. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    8. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    9. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    10. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    11. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    13. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Alnaqi, Abdulwahab A. & Sayyad Tavoos Hal, Sina & Aghaei, Alireza & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Predicting the effect of functionalized multi-walled carbon nanotubes on thermal performance factor of water under various Reynolds number using artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 493-500.
    15. Anum Shafiq & Ilyas Khan & Ghulam Rasool & El-Sayed M. Sherif & Asiful H. Sheikh, 2020. "Influence of Single- and Multi-Wall Carbon Nanotubes on Magnetohydrodynamic Stagnation Point Nanofluid Flow over Variable Thicker Surface with Concave and Convex Effects," Mathematics, MDPI, vol. 8(1), pages 1-15, January.
    16. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    17. Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
    18. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash, 2019. "Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 639-660.
    19. Najafi, Mohammad Javid & Naghavi, Sayed Mahdi & Toghraie, Davood, 2019. "Numerical simulation of flow in hydro turbines channel to improve its efficiency by using of Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 390-408.
    20. Alsarraf, Jalal & Bagherzadeh, Seyed Amin & Shahsavar, Amin & Rostamzadeh, Mahfouz & Trinh, Pham Van & Tran, Minh Duc, 2019. "Rheological properties of SWCNT/EG mixture by a new developed optimization approach of LS-Support Vector Regression according to empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 912-920.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:519:y:2019:i:c:p:209-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.